This paper presents a design approach of air foil bearings (AFBs) for a 120 kWe gas turbine generator, which is a single spool configuration with gas generator turbine and alternator rotor connected by a diaphragm coupling. A total of four radial AFBs support the two rotors, and one set of double acting thrust foil bearing is located inside the gas generator turbine. The rotor configuration results in eight degree of freedom (DOF) rotordynamic motions, which are two cylindrical modes and two conical modes from the two rotors. Stiffness of bump foils of candidate AFB was estimated from measured structural stiffness of the bearing, and implemented to the computational model for linear stiffness and damping coefficients of the bearing and frequency-domain modal impedances for cylindrical and conical modes. Stiffness of the diaphragm coupling was evaluated using finite element analysis and implemented to nonlinear rotordynamic analyses of the entire engine. Analyses show the conical mode of the turbine rotor is the main source of instability of the entire engine when AFB clearance is not selected properly. Optimum AFB clearance is suggested from frequency domain modal analyses and nonlinear transient analyses.

References

1.
“Descriptions of Jinsol Turbomachinery, Ltd., Product Line of Turbo Blowers, Turbo Compressors, and Generators” available at
http://
www.jinsolturbo.co.kr/., access date November
2012
.
2.
“Capstone Microturbine Solutions Product Index” available at http://www.capstoneturbine.com/prodsol/products/, access date November
2012
.
3.
“Descriptions of Neuros Co. Ltd, Product Line of Turbo Blowers, Turbo Compressors, and Generators” available at http://www.neuros.com/., access date November
2012
.
4.
Valco
,
M. J.
, and
DellaCorte
,
C.
,
2003
, “
Emerging Oil-Free Turbomachinery for Military Propulsion and Power Applications
,”
Proceedings of the 23rd Army Sciences Conference
, Ft. Lauderdale, FL, December 2–5.
5.
Howard
,
S. A.
,
Bruckner
,
R. J.
, and
Radil
,
K. C.
,
2010
, “
Advancements Toward Oil-Free Rotorcraft Propulsion
,” NASA Technical Report No. NASA/TM—2010-216094.
6.
DellaCorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications
,”
STLE Tribol. Trans.
,
43
(
4
), pp.
795
801
.10.1080/10402000008982410
7.
Kim
,
D.
,
2007
, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
,
129
(
2
), pp.
354
364
.10.1115/1.2540065
8.
Kim
,
D.
, and
Varrey
,
M.
,
2012
, “
Imbalance Response and Stability Characteristics of a Rotor Supported by Hybrid Air Foil Bearings
,”
STLE Tribol. Trans.
,
55
(
4
), pp.
529
538
.10.1080/10402004.2012.681341
9.
Wilde
,
D.
, and
San Andrés
,
L.
,
2003
, “
Comparison of Rotordynamic Analysis Predictions with the Test Response of Simple Gas Hybrid Bearings for Oil-Free Turbomachinery
,”
ASME
Paper No. GT2003-38859.10.1115/GT2003-38859
10.
Peng
,
J. P.
, and
Carpino
,
M.
,
1993
, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
,
115
(
1
), pp.
20
27
.10.1115/1.2920982
11.
Carpino
,
M.
, and
Talmage
,
G.
,
2006
, “
Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings With Corrugated Sub-Foils
,”
STLE Tribol. Trans.
,
49
(
3
), pp.
400
409
.10.1080/10402000600781416
12.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2007
, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,”
ASME
Paper No. GT2007-27249.10.1115/GT2007-27249
13.
Ku
,
C. R.
, and
Heshmat
,
H.
,
1992
, “
Compliant Foil Bearing Structural Stiffness Analysis: Part I—Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
(
2
), pp.
394
400
.10.1115/1.2920898
14.
Lez
,
S. L.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines and Power
,
129
(
4
), pp.
1047
1057
.10.1115/1.2747638
15.
Lez
,
S. L.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
,
129
(
1
), pp.
75
83
.10.1115/1.2390717
16.
Lee
,
D.
,
Kim
,
Y.
, and
Kim
,
T.
,
2009
, “
The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response
,”
STLE Tribol. Trans.
,
52
(
2
), pp.
146
156
.10.1080/10402000802192685
17.
Kumar
,
M.
, and
Kim
,
D.
,
2008
, “
Parametric Studies on Dynamic Performance of Hybrid Air Foil Bearings
,”
ASME J. Eng. Gas Turbines and Power
,
130
(
6
), pp.
062501-1
062501-7
.10.1115/1.2940354
18.
Kim
,
D.
, and
Park
,
S.
,
2009
, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations
,”
Elsevier Tribology International
,
42
(
3
), pp.
413
425
.10.1016/j.triboint.2008.08.001
19.
Kumar
,
M.
, and
Kim
,
D.
,
2010
, “
Static Performance of Hydrostatic Air Bump Foil Bearing
,”
Elsevier Tribology International
,
43
(
4
), pp.
752
758
.10.1016/j.triboint.2009.10.015
20.
Kim
,
D.
, and
Lee
,
D.
,
2010
, “
Design of Three-Pad Hybrid Air Foil Bearing and Experimental Investigation on Static Performance at Zero Running Speed
,”
ASME J. Eng. Gas Turbines and Power
,
132
(
12
), p.
122504
.10.1115/1.4001066
21.
Kim
,
D.
, and
Zimbru
,
G.
,
2012
, “
Start-Stop Characteristics and Thermal Behavior of A Large Hybrid Airfoil Bearing for Aero-Propulsion Applications
,”
ASME J. Eng. Gas Turbines and Power
,
134
(
3
), p.
032502
.10.1115/1.4004487
22.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermo-Hydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
(
2
), p.
021704
.10.1115/1.4001014
23.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME
Paper No. GT2009-59919.10.1115/GT2009-59919
24.
Radil
,
K.
,
DellaCorte
,
C.
, and
Zeszotek
,
M.
,
2007
, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
,
63
(
10
), pp.
319
327
.10.1080/10402000701413497
25.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
STLE Tribol. Trans.
,
47
(
4
), pp.
470
479
.10.1080/05698190490501995
26.
Peng
,
Z. C.
, and
Khonsari
,
M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
534
541
.10.1115/1.2197526
27.
Feng
,
K.
, and
Kaneko
,
S.
,
2008
, “
A Study of Thermohydrodynamic Features of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME
Paper No. GT2008-50110.10.1115/GT2008-50110
28.
Lee
,
D.
,
Kim
,
D.
, and
Sadashiva
,
R. P.
,
2011
, “
Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments
,”
ASME J. Tribol.
,
133
(
2
), p.
021703
.10.1115/1.4003561
29.
Kim
,
D. J.
,
Ki
,
J. P.
,
Kim
,
Y. C.
, and
Ahn
,
K. Y.
,
2012
, “
Extended Three-Dimensional Thermo-Hydrodynamic Model of Radial Foil Bearing
,”
ASME J. Eng. Gas Turbines and Power
,
134
(
5
), p.
052501
.10.1115/1.4005215
30.
Heshmet
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
,
2000
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.10.1115/1.555343
31.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.10.1115/1.2834140
32.
Bruckner
,
R. J.
,
2004
, “
Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
33.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermo-Hydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
STLE Tribol. Trans.
,
54
(
3
), pp.
432
448
.10.1080/10402004.2011.556314
34.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines and Power
,
133
(
4
), p.
042501
.10.1115/1.4002249
You do not currently have access to this content.