New promising applications of organic Rankine cycle (ORC) technology, e.g., concentrated solar power, automotive heat recovery and off-grid distributed electricity generation, demand for more dynamic operation of ORC systems. Accurate physically-based dynamic modeling plays an important role in the development of such systems, both during the preliminary design as an aid for configuration and equipment selection, and for control design and optimization purposes. A software library of modular reusable dynamic models of ORC components has been developed in the MODELICA language and is documented in the paper. The model of an exemplary ORC system, namely the 150 kWe Tri-O-Gen ORC turbogenerator is validated using few carefully conceived experiments. The simulations are able to reproduce steady-state and dynamic measurements of key variables, both in nominal and in off-design operating conditions. The validation of the library opens doors to control-related studies, and to the development of more challenging dynamic applications of ORC power plants.

References

1.
Wei
,
D.
,
Lu
,
X.
,
Lu
,
Z.
, and
Gu
,
J.
,
2008
, “
Dynamic Modeling and Simulation of an Organic Rankine Cycle (ORC) System for Waste Heat Recovery
,”
Appl. Therm. Eng.
,
28
(
10
), pp.
1216
1224
.10.1016/j.applthermaleng.2007.07.019
2.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Schuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
(
6
), pp.
2183
2190
.10.1016/j.apenergy.2011.01.015
3.
Colonna
,
P.
, and
van Putten
,
H.
,
2007
, “
Dynamic Modeling of Steam Power Cycles.: Part I—Modeling Paradigm and Validation
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
467
480
.10.1016/j.applthermaleng.2006.06.011
4.
van Putten
,
H.
, and
Colonna
,
P.
,
2007
, “
Dynamic Modeling of Steam Power Cycles: Part II—Simulation of a Small Simple Rankine Cycle System
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2566
2582
.10.1016/j.applthermaleng.2007.01.035
5.
Mattsson
,
S. E.
,
Elmqvist
,
H.
, and
Otter
,
M.
,
1998
, “
Physical System Modeling With Modelica
,”
Control Eng. Pract.
,
6
(
4
), pp.
501
510
.10.1016/S0967-0661(98)00047-1
6.
Tiller
,
M.
,
2001
,
Introduction to Physical Modelling With Modelica
,
Kluwer
,
New York
.
7.
Fritzson
,
P.
,
2003
,
Principles of Object-Oriented Modeling and Simulation With Modelica 2.1
,
Wiley
,
New York
.
8.
Casella
,
F.
,
2009
, “
Object-Oriented Modelling of Power Plants: A Structured Approach
,”
Proceedings of the IFAC Symposium on Power Plants and Power Systems Control
, Tampere, Finland, July 5–8.
9.
Casella
,
F.
, and
Colonna
,
P.
,
2012
, “
Dynamic Modelling of IGCC Power Plants
,”
Appl. Therm. Eng.
,
35
, pp.
91
111
.10.1016/j.applthermaleng.2011.10.011
10.
Cellier
,
F.
, and
Kofman
,
E.
,
2006
,
Continuous System Simulation
,
Springer-Verlag
,
New York
.
11.
Cammi
,
A.
,
Casella
,
F.
,
Ricotti
,
M.
, and
Schiavo
,
F.
,
2005
, “
Object-Oriented Modeling, Simulation and Control of the Iris Nuclear Power Plant With Modelica
,”
Proceedings 4th International Modelica Conference
, Hamburg, March 7–8,
G.
Schmitz
, ed., Modelica Association, pp.
423
432
.
12.
Casella
,
F.
, and
Leva
,
A.
,
2003
, “
Modelica Open Library for Power Plant Simulation: Design and Experimental Validation
,”
Proceedings 3rd International Modelica Conference
,
P.
Fritzson
, ed., Modelica Association, Linköping, Sweden, pp.
41
50
; available at http://www.elet.polimi.it/upload/casella/thermopower/
13.
Casella
,
F.
, and
Leva
,
A.
,
2006
, “
Modelling of Thermo-Hydraulic Power Generation Processes Using Modelica
,”
Math. Comput. Model. Dyn. Syst.
,
12
(
1
), pp.
19
33
.10.1080/13873950500071082
14.
Casella
,
F.
, and
Richter
,
C. C.
,
2008
, “
ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica
,”
Proceedings 6th International Modelica Conference
, Bielefeld, Germany, March 3–4,
B.
Bachmann
, ed., Modelica Association, Linköping, Sweden, pp.
157
161
.
15.
Colonna
,
P.
,
van der Stelt
,
T. P.
, and
Guardone
,
A.
,
2010
, “
FluidProp (Version 3.0): A Program for the Estimation of Thermophysical Properties of Fluids
,” http://www.fluidprop.com/
16.
Larjola
,
J.
,
1995
, “
Electricity From Industrial Waste Heat Using High-Speed Organic Rankine Cycle (ORC)
,”
Int. J. Prod. Econ.
,
41
(
13
), pp.
227
235
.10.1016/0925-5273(94)00098-0
17.
Franke
,
R.
,
Casella
,
F.
,
Otter
,
M.
,
Sielemann
,
M.
,
Elmqvist
,
H.
,
Mattsson
,
S.
, and
Olsson
,
H.
,
2009
, “
Stream Connectors—An Extension of Modelica for Device-Oriented Modeling of Convective Transport Phenomena
,”
Proceedings 7th International Modelica Conference
, Como, Italy, September 20–22,
F.
Casella
, ed., The Modelica Association, Linköping, Sweden, pp.
108
121
.
18.
Lemmon
,
E.
, and
Span
,
R.
,
2006
, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
,
51
(
3
), pp.
785
850
.10.1021/je050186n
19.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0
,
National Institute of Standards and Technology
, Gaithersburg, MD.
20.
Åkesson
,
J.
,
Årzén
,
C.
,
Gäfvert
,
M.
,
Bergdahl
,
T.
, and
Tummescheit
,
H.
,
2010
, “
Modeling and Optimization With Optimica and JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Optimization Problems
,”
Comput. Chem. Eng.
,
34
(
11
), pp.
1737
1749
.10.1016/j.compchemeng.2009.11.011
You do not currently have access to this content.