An inherent difficulty in sensor-data-driven fault detection is that the detection performance could be drastically reduced under sensor degradation (e.g., drift and noise). Complementary to traditional model-based techniques for fault detection, this paper proposes symbolic dynamic filtering by optimally partitioning the time series data of sensor observation. The objective here is to mask the effects of sensor noise level variation and magnify the system fault signatures. In this regard, the concepts of feature extraction and pattern classification are used for fault detection in aircraft gas turbine engines. The proposed methodology of data-driven fault detection is tested and validated on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed developed by NASA for noisy (i.e., increased variance) sensor signals.

1.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2003, “
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
,”
Turbo Expo
, Atlanta, GA, Jun. 16–19.
2.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2007, “
Hybrid Kalman Filter Approach for Aircraft Engine In-Flight Diagnostics: Sensor Fault Detection Case
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
746
754
.
3.
Simon
,
D.
, and
Simon
,
D. L.
, 2005, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
323
328
.
4.
Volponi
,
A. J.
,
Brotherton
,
T.
,
Luppold
,
R.
, and
Simon
,
D. L.
, 2003, “
Development of an Information Fusion System for Engine Diagnostics and Health Management
,”
39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/Third Modeling and Simulation Joint Subcommittee Meeting
, Colorado Springs, CO, Dec. 1–5, Paper No. NASA/TM2004-212924.
5.
Chu
,
E.
,
Gorinevsky
,
D.
, and
Boyd
,
S.
, 2010, “
Detecting Aircraft Performance Anomalies From Cruise Flight Data
,”
AIAA Infotech Aerospace Conference
, Atlanta, GA.
6.
Park
,
S.
, and
Himmelblau
,
D. M.
, 1983, “
Fault Detection and Diagnosis via Parameter Estimation in Lumped Dynamic Systems
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
22
(
3
), pp.
482
487
.
7.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
, 2008, “
Damage Propagation Modeling for Aircraft Engine Run-To-Failure Simulation
,”
Proceedings of the International Conference on Prognostics and Health Management (PHM08)
, Denver, CO.
8.
Ray
,
A.
, 2004, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
0165-1684,
84
(
7
), pp.
1115
1130
.
9.
Rajagopalan
,
V.
, and
Ray
,
A.
, 2006, “
Symbolic Time Series Analysis via Wavelet-Based Partitioning
,”
Signal Process.
0165-1684,
86
(
11
), pp.
3309
3320
.
10.
Gupta
,
S.
,
Ray
,
A.
, and
Keller
,
E.
, 2007, “
Symbolic Time Series Analysis of Ultrasonic Data for Early Detection of Fatigue Damage
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
2
), pp.
866
884
.
11.
Rao
,
C.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
, 2009, “
Review and Comparative Evaluation of Symbolic Dynamic Filtering for Detection of Anomaly Patterns
,”
Signal, Image and Video Processing
,
3
(
2
), pp.
101
114
.
12.
Gupta
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
, 2008, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines: Part I—Underlying Concept
,”
Proc. Inst. Mech. Eng., Part G: Journal of Aerospace Engineering
,
222
(
3
), pp.
307
318
.
13.
Sarkar
,
S.
,
Yasar
,
M.
,
Gupta
,
S.
,
Ray
,
A.
, and
Mukherjee
,
K.
, 2008, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines: Part II—Validation on a Simulation Test Bed
,”
Proc. Inst. Mech. Eng., Part G: Journal of Aerospace Engineering
,
222
(
3
), pp.
319
330
.
14.
Sarkar
,
S.
,
Rao
,
C.
, and
Ray
,
A.
, 2009, “
Statistical Estimation of Multiple Faults in Aircraft Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G: Journal of Aerospace Engineering
,
223
(
4
), pp.
415
424
.
15.
Larson
,
E. C.
,
Parker
,
B. E.
, Jr.
, and
Clark
,
B. R.
, 2002, “
Model-Based Sensor and Actuator Fault Detection and Isolation
,”
Proceedings of the American Control Conference
, Vol.
5
, pp.
4215
4219
.
16.
2007, C-MAPSS: Commercial Modular Aero-Propulsion System Simulation, NASA GRC Software Repository.
17.
Frederick
,
D. K.
,
DeCastro
,
J. A.
, and
Litt
,
J. S.
, 2007, User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS), NASA/TM2007-215026.
18.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2001, “
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
,”
37th Joint Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE, and ASEE
, Salt Lake City, UT.
19.
Koushanfar
,
F.
,
Potkonjak
,
M.
, and
Sangiovanni-Vincentelli
,
A.
, 2003, “
On-Line Fault Detection of Sensor Measurements
,”
Sensors, Proceedings of IEEE
, Vol.
2
, pp.
974
980
.
20.
Simon
,
D. L.
, and
Garg
,
S.
, 2010, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
3
), pp.
031601
.
21.
Lu
,
P.
,
Zhang
,
M.
,
Hsu
,
T.
, and
Zhang
,
J.
, 2001, “
An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
2
), pp.
340
346
.
22.
Subbu
,
A.
, and
Ray
,
A.
, 2008, “
Space Partitioning via Hilbert Transform for Symbolic Time Series Analysis
,”
Appl. Phys. Lett.
0003-6951,
92
(
8
), p.
084107
.
23.
Bishop
,
C. M.
, 2006,
Pattern Recognition and Machine Learning
(Information Science and Statistics)
,
Springer-Verlag New York
,
Secaucus, NJ
.
24.
Duda
,
R.
,
Hart
,
P.
, and
Stork
,
D.
, 2001,
Pattern Classification
,
Wiley
,
New York
.
25.
Mclachlan
,
G. J.
, 2004,
Discriminant Analysis and Statistical Pattern Recognition
(Wiley Series in Probability and Statistics)
,
Wiley-Interscience
,
New York
.
26.
Choi
,
E.
, and
Lee
,
C.
, 2003, “
Feature Extraction Based on the Bhattacharyya Distance
,”
Pattern Recognition
,
36
, pp.
1703
1709
.
27.
Steuer
,
R.
,
Molgedey
,
L.
,
Ebeling
,
W.
, and
Jimenez-Montano
,
M.
, 2001, “
Entropy and Optimal Partition for Data Analysis
,”
Eur. Phys. J. B
1434-6028,
19
, pp.
265
269
.
28.
Sarkar
,
S.
,
Mukherjee
,
K.
, and
Ray
,
A.
, 2009, “
Generalization of Hilbert Transform for Symbolic Analysis of Noisy Signals
,”
Signal Process.
0165-1684,
89
(
6
), pp.
1245
1251
.
29.
Alaiz-Rodriguez
,
R.
,
Guerrero-Curieses
,
A.
, and
Cid-Sueiro
,
J.
, 2005, “
Minimax Classifiers Based on Neural Networks
,”
Pattern Recognition
,
38
(
1
), pp.
29
39
.
30.
Jin
,
X.
,
Sarkar
,
S.
,
Mukherjee
,
K.
, and
Ray
,
A.
, 2009, “
Suboptimal Partitioning of Time-Series Data for Anomaly Detection
,”
Conference on Decision and Control
, Shanghai, China.
31.
Romessis
,
C.
, and
Mathioudakis
,
K.
, 2006, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
1
), pp.
64
72
.
32.
Basir
,
O.
, and
Yuan
,
X.
, 2007, “
Engine Fault Diagnosis Based on Multi-Sensor Information Fusion Using Dempster–Shafer Evidence Theory
,”
Inf. Fusion
1566-2535,
8
(
4
), pp.
379
386
.
You do not currently have access to this content.