The problem of planning the production of a pool of power plants has been deeply investigated. Maintenance management and load allocation problems have been assumed as crucial aspects for achieving maximum plant profitability. A production-planning approach has been developed, and genetic algorithm techniques have been adopted to implement the developed approach. Life consumption of gas turbines’ hot-section components has been considered as a key element required in simulating plants’ behaviors. As a result, a deterioration model has been developed and included into the planning algorithm. The developed approach takes market scenarios, as well as actual statuses and performances of plant components into account. The plants’ physical models are developed on a modular approach basis and provide the operating parameters required by the planning algorithm. Neural network techniques have been applied to speed up the simulation. Economic implications related to maintenance strategies, including postponement or anticipation of maintenance interventions, are investigated and the results obtained by the numerical simulation are presented and widely discussed.

1.
Beèr
,
J. M.
, 2007, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust. Sci.
0360-1285,
33
, pp.
107
133
.
2.
Cerri
,
G.
,
Borghetti
,
S.
, and
Salvini
,
C.
, 2006, “
Models for Simulation and Diagnosis of Energy Plant Components
,” ASME Paper No. PWR2006-88146.
3.
Cerri
,
G.
,
Gazzino
,
M.
, and
Borghetti
,
S.
, 2006, “
Hot Section Life Assessment by a Creep Model to Plan Gas Turbine Based Power Plant Electricity Production
,”
The Future of Gas Turbine Technology, Third International Conference
, Brussels, Belgium, Oct. 11–12.
4.
Boccaletti
,
C.
,
Cerri
,
G.
,
Khatri
,
D. S.
, and
Seyedan
,
B.
, 1999, “
An Application of Neural Network in Combustion Processes Evaluations
,”
Proceedings of the International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science
, Macao, Aug. 2–5.
5.
Boccaletti
,
C.
,
Cerri
,
G.
,
Khatri
,
D. S.
, and
Seyedan
,
B.
, 1999, “
Neural Network Approach in Gas Expansion Evaluations
,”
14th International Symposium on Airbreathing Engines
, ISABE, Florence, Italy, Sept. 5–10.
6.
Urban
,
L. A.
, 1972, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,” AIAA Paper No. 72-1082.
7.
Lensi
,
R.
, and
Andrenucci
,
M.
, 1978,
Designing a Diagnostic Model for Gas Turbine Plants
,
Istituto di Macchine, Università di Pisa
,
Italy
.
8.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1990, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
168
175
.
9.
Doel
,
D. L.
, 1994, “
TEMPER—A Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
82
89
.
10.
Benvenuti
,
E.
,
Bettocchi
,
R.
,
Cantore
,
G.
,
Negri di Montenegro
,
G.
, and
Spina
,
P. R.
, 1993, “
Gas Turbine Cycle Modeling Oriented to Component Performance Evaluation from Limited Design or Test Data
,”
Proceedings of the Seventh ASME Cogen-Turbo
, Bournemouth, UK, pp.
327
337
.
11.
Bettocchi
,
R.
, and
Spina
,
P. R.
, 1999, “
A Method for the Diagnosis of Gas Turbine Sensor Faults in Presence of Measurement Noise
,” ASME Paper No. 99-GT-303.
12.
Patton
,
R. J.
,
Frank
,
P.
, and
Clark
,
R.
, 1989,
Fault Diagnosis in Dynamic Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Gertler
,
J.
, 1988, “
Survey of Model-Based Failure Detection and Isolation in Complex Plants
,”
IEEE Control Syst. Mag.
,
8
(
6
), pp.
3
11
. 0272-1708
14.
Gertler
,
J.
, and
Singer
,
D.
, 1990, “
A New Structural Framework for Parity Equation-Based Failure Detection and Isolation
,”
Automatica
0005-1098,
26
(
2
), pp.
381
388
.
15.
Kelly
,
R. W.
, 1996, “
Application of Analytical Redundancy to the Detection of Sensor Faults on a Turbofan Engine
,” ASME Paper No. 96-GT-3.
16.
Bettocchi
,
R.
,
Spina
,
P. R.
, and
Azzoni
,
P. M.
, 1996, “
Fault Detection for Gas Turbine Sensors Using I/O Dynamic Linear Models—Methodology of Fault Code Generation
,” ASME Paper No. 96-TA-002, pp.
1
9
.
17.
Bettocchi
,
R.
, and
Spina
,
P. R.
, 1997, “
ARX Linear Model Set-Up for Fault Diagnosis of Gas Turbine Sensors
,” ASME Paper 97-GT-027, pp.
1
9
.
18.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
, 1992, “
Optimal Measurement and Health Index Selection for Gas Turbine Performance Status and Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
209
216
.
19.
Pinelli
,
M.
, and
Spina
,
P. R.
, 2000, “
Gas Turbine Field Performance Determination: Sources of Uncertainties
,” ASME Paper No. 2000-GT-0311, pp.
1
8
.
20.
Leyse
,
R. H.
,
Armor
,
A. F.
, and
Gehl
,
S. M.
, 1991, “
Fossil Plant Instrumentation and Monitoring
,”
International Joint Power Generation Conference
, San Diego, CA.
21.
Mazzarell
,
G. R.
, and
Chang
,
P. S.
, 1991, “
Update on the Enhacement of Florida Power and Light 400 MW Steam Generator Program
,”
International Joint Power Generation Conference
, San Diego, CA.
22.
Rickli
J. P.
, 1993, “
Controls, Monitoring and Performances Measurements
,”
Von Karman Institute for Fluid Dynamics Lecture Series ‘08
.
23.
Lang
,
F. D.
, and
Lang
,
A. F.
, 1999, “
Monitoring and Improving Coal-Fired Power plants using the Input/Loss Method
,”
International Joint Power Generation Conference
, San Francisco, CA.
24.
Dehil
,
B.
, and
Lang
,
F. D.
, (1999), “
Practical Experience With the Input/Loss Method as Applied to a CFB Power Plant
,”
International Joint Power Generation Conference
, San Francisco, CA.
25.
Cerri
,
G.
,
Borghetti
,
S.
, and
Salvini
,
C.
, 2005, “
Inverse Methodologies for Actual Status Recognition of Gas Turbine Components
,” ASME Paper No. PWR2005-50033.
26.
Benvenuti
,
E.
, 2001, “
Innovative Gas Turbine Performance Diagnostics and Hot Parts Life Assessment Techniques
,”
Proceedings of the 30th Turbo Machinery Symposium
, Texas A&M University, 2001.
27.
Sampath
,
S.
, and
Singh
,
R.
, 2003, “
Managing Maintenance and Operational Availability of Gas Turbine Propelled Naval Ships Through Advanced Engine Fault Diagnostics
,” ASME Paper GT2003-38456.
28.
Silva
,
P.
,
Campanari
,
S.
, and
Macchi
,
E.
, 2003, “
Optimization of Operating Conditions and Compressor Cleaning Time Intervals of Combined Cycles in a Liberalized Market
,”
Proceedings of the ASME Turbo Expo
, Atlanta, GA, June 16–19.
29.
Lowden
,
P.
,
Weber
,
B.
,
Grant
,
R.
,
Jin
,
H.
, and
Pistor
,
R.
, 2006, “
Prediction of Gas Turbine Blade Life: An Interdisciplinary Engineering Approach for Condition-Based Maintenance
,” ASME Paper No. GT2006-90037.
30.
Cerri
,
G.
,
Gazzino
,
M.
,
Botta
,
F.
, and
Salvini
,
C.
, 2007, “
Production Planning With Hot Section Life Prediction for Optimum Gas Turbine Management
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Dec. 2–7, Paper No. IGTC2007-TS-154.
31.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
, 2005, “
Thermal-Mechanical Life Prediction System for Anisotropic Turbine Components
,” ASME Paper No. GT2005-68107.
32.
Beachkofski
,
B. K.
, and
Grandhi
,
R. V.
, 2004, “
Probabilistic System Reliability for a Turbine Engine Airfoil
,” ASME Paper No. GT2004-53381.
33.
Wallace
,
J. M.
, and
Mavris
,
D. N.
, (2003), “
Creep Life Uncertainty Assessment of a Gas Turbine Airfoil
,”
Proceedings of the Fifth AIAA Non-Deterministic Approaches Forum
, Norfolk, VA, April 7–10.
34.
Liu
,
Z.
,
Mavris
,
D. N.
, and
Volovoi
,
V. V.
, 2001, “
Creep Life Prediction of a Gas Turbine Components Under Varying Operating Conditions
,”
Proceedings of the 2001 ASME International Joint Power Generation Conference
, New Orleans, LA, June 4–7.
35.
Cerri
,
G.
, 1996, “
A Simultaneous Solution Method Based on a Modular Approach for Power Plant Analyses and Optimized Designs and Operations
,” ASME Paper No. 96-GT-302.
36.
Cerri
,
G.
,
Borghetti
,
S.
, and
Salvini
,
C.
, 2005b, “
Neural Management for Heat and Power Cogeneration Plants
,”
The Ninth International Conference on Engineering Applications of Neural Networks
, Lille, France, Aug. 24–26.
37.
Von Mises
,
R.
, 1913, “
Mechanik der Festen Korper im Plastisch Deformablen Zustand
,”
Göttin. Nachr. Math. Phys.
,
1
, pp.
582
592
.
38.
Ross
,
E. W.
, and
O’Hara
,
K. S.
, 1992,
Renè 142: A High Strength, Oxidation Resistant DS Turbine Airfoil Alloy
,
Proceedings of the Seventh International Symposium on Superalloys in Champion
, PA, Sept. 20–24, pp.
257
266
.
39.
Penny
,
R. K.
, and
Marriott
,
D. L.
, 1995,
Design for Creep
, 2nd ed.,
Chapman and Hall
,
London
.
40.
Gazzino
,
M.
, 2005, “
Influenza del Creep dei Componenti ad Alta Temperatura sulla Pianificazione della Produzione Elettrica di un Parco di Centrali Equipaggiate con Turbina a Gas
,” MS thesis, Roma Tre University.
41.
Diakunchak
,
I. S.
, 1992, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
161
168
.
42.
Hoeft
,
R.
,
Janawitz
,
J.
, and
Keck
,
R.
, 2003, “
Heavy-Duty Gas Turbine Operative and Maintenance Considerations
,” GE Power Generation Report No. GER3620J.
43.
Cerri
,
G.
,
Evans
,
R.
,
Frangopoulos
,
C. A.
,
Parrella
,
M.
,
Pitt
,
R. U.
,
Psychogios
,
J.
,
Salvador
,
S.
,
Sepielli
,
M.
, and
Seyedan
,
B.
, 2000, “
Optimum Management System With Environmental Monitoring
,” ASME Paper No. 2000-GT-310.
44.
Kemfert
,
C.
, and
Tol
,
R.
, 2000, “
Economic Effects of the Liberalisation of the German Electricity Market-Simulation by a Game Theoretic Modelling Tool
,” Working Paper No. 89/2000.
You do not currently have access to this content.