Predictions of breakup length of a liquid sheet emanating from a pressure-swirl (simplex) fuel atomizer have been carried out by computationally modeling the two-phase flow in the atomizer coupled with a nonlinear analysis of instability of the liquid sheet. The volume-of-fluid (VOF) method has been employed to study the flow field inside the pressure-swirl atomizer. A nonlinear instability model has been developed using a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter to determine the sheet instability and breakup. The results for sheet thickness and velocities from the internal flow solutions are used as input in the nonlinear instability model. Computational results for internal flow are validated by comparing film thickness at exit, spray angle, and discharge coefficient with available experimental data. The predictions of breakup length show a good agreement with semiempirical correlations and available experimental measurements. The effect of elevated ambient pressure on the atomizer internal flow field and sheet breakup is investigated. A decrease in air core diameter is obtained at higher ambient pressure due to increased liquid-air momentum transport. Shorter breakup lengths are obtained at elevated air pressure. The coupled internal flow simulation and sheet instability analysis provides a comprehensive approach to modeling sheet breakup from a pressure-swirl atomizer.

1.
Lefebvre
,
A. H.
, 1989,
Atomization and Spray
,
Hemisphere
,
New York
.
2.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
, 1985, “
Internal Flow Characteristics of Simplex Swirl Atomizers
,”
J. Propul. Power
0748-4658,
1
(
3
), pp.
193
199
.
3.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
, 1986, “
Influence of Liquid Properties on the Internal Flow Characteristics of Simplex Swirl Atomizers
,”
Atomization and Spray Technology
,
2
(
3
), pp.
219
233
.
4.
Sakman
,
A. T.
,
Jog
,
M. A.
,
Jeng
,
S. M.
, and
Benjamin
,
M. A.
, 2000, “
Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance
,”
AIAA J.
0001-1452,
38
, pp.
1214
1218
.
5.
Xue
,
J.
,
Jog
,
M. A.
,
Jeng
,
S. M.
,
Steinthorsson
,
E.
, and
Benjamin
,
M. A.
, 2004, “
Effect of Geometric Parameters on Simplex Atomizer Performance
,”
AIAA J.
0001-1452,
42
, pp.
2408
2415
.
6.
Cousin
,
J.
,
Ren
,
W. M.
, and
Nally
,
S.
, 1999, “
Recent Developments in Simulations of Internal Flows in High Pressure Swirl Injectors
,”
Oil Gas Sci. Technol.
,
54
(
2
), pp.
227
223
.
7.
Liao
,
Y.
,
Sakman
,
A. T.
,
Jeng
,
S. M.
,
Jog
,
M. A.
, and
Benjamin
,
M. A.
, 1999, “
A Comprehensive Model to Predict Simplex Atomizer Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
285
294
.
8.
Ibrahim
,
A. A.
,
Jog
,
M. A.
, and
Jeng
,
S. M.
, 2004, “
Effect of Liquid Swirl Velocity Profile on Mean Droplet Diameter Predictions for Simplex Atomizers
,” ILASS-AMERICAS, Arlington, VA.
9.
Yule
,
A. J.
, and
Chinn
,
J. J.
, 2000, “
The Internal Flow and Exit Conditions of Pressure Swirl Atomizers
,”
Atomization Sprays
1044-5110,
10
, pp.
121
146
.
10.
Jeng
,
S. M.
,
Jog
,
M. A.
, and
Benjamin
,
M. A.
, 1998, “
Computational and Experimental Study of Liquid Sheet Emanating From Simplex Fuel Nozzle
,”
AIAA J.
0001-1452,
36
, pp.
201
207
.
11.
Xue
,
J.
,
Jog
,
M. A.
,
Jeng
,
S. M.
,
Steinthorsson
,
E.
, and
Benjamin
,
M. A.
, 2002, “
Influence of Geometry on the Performance of Simplex Nozzles Under Constant Pressure Drop
,” ILASS Americas,
Proceedings of the 15th Annual Conference on Liquid Atomization and Spray Systems
,
Madison, WI
.
12.
Hansen
,
K. G.
,
Madsen
,
J.
,
Trinh
,
C. M.
,
Ibsen
,
C. H.
,
Solberg
,
T.
, and
Hjertager
,
B. H.
, 2002, “
Numerical Simulation of Internal Flow in a Large-Scale Pressure-Swirl Atomizer
,” ILASS-Europe, Zaragoza.
13.
Hansen
,
K. G.
, and
Madsen
,
J.
, 2001, “
A Computational and Experimental Study of the Internal Flow in a Scaled Pressure-Swirl Atomizer
,” Master’s thesis, Aalborg Universitet Esbjerg, Denmark.
14.
Dash
,
S. K.
,
Halder
,
M. R.
,
Peric
,
M.
, and
Som
,
S. K.
, 2001, “
Formation of Air Core in Nozzles With Tangential Entry
,”
J. Fluid Mech.
0022-1120,
123
, pp.
829
835
.
15.
Ibrahim
,
A. A.
,
Jog
,
M. A.
, and
Jeng
,
S. M.
, 2005, “
Computational Simulation of Two-Phase Flow in Simplex Atomizers
,” ILASS-AMERICAS, Irvine, California.
16.
Giffen
,
E.
, and
Muraszew
,
A.
, 1953,
The Atomization of Liquid Fuels
,
Wiley
,
New York
.
17.
Gavaises
,
M.
, and
Arcoumanis
,
C.
, 2001, “
Modeling of Sprays From High Pressure Swirl Atomizers
,”
Int. J. Engine Research
,
2
(
2
), pp.
95
117
.
18.
Lin
,
S. P.
, 2003,
Breakup of Liquid Sheets and Jets
,
Cambridge University Press
.
19.
Sirignano
,
W. A.
, and
Mehring
,
C.
, 2000, “
Review of Theory of Distortion and Disintegration of Liquid Streams
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
609
655
.
20.
Lee
,
C. P.
, and
Wang.
,
T. G.
, 1986, “
A Theoretical Model for Annular Jet Instability
,”
Phys. Fluids
0031-9171,
29
, pp.
2076
2085
.
21.
Lee
,
C. P.
, and
Wang
,
T. G.
, 1988, “
Dynamics of Thin Liquid Sheets
,” in
Proceedings of the 3rd International Colloquium on Drops and Bubbles
,
T. G.
Wang
, ed., pp.
496
504
.
22.
Panchagnula
,
M. V.
,
Sojka
,
P. E.
, and
Bajaj
,
A. K.
, 1998, “
The Non-Linear Breakup of Annular Liquid Sheets
,” in
Proceedings of the 11th Annual Conference Liquid Atomization Spray Systems
, pp.
170
174
.
23.
Mehring
,
C.
, and
Sirignano
,
W. A.
, 1999, “
Axisymmetric Capillary Waves on Thin Annular Liquid Sheets Part I: Temporal Stability
,”
Phys. Fluids
1070-6631,
12
, pp.
1417
1439
.
24.
Mehring
,
C.
, and
Sirignano
,
W. A.
, 1999, “
Axisymmetric Capillary Waves on Thin Annular Liquid Sheets Part II: Spatial Stability
,”
Phys. Fluids
1070-6631,
12
, pp.
1440
1460
.
25.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
26.
Fluent 6.2 User’s Guide, Fluent Inc., Lebanon, NH.
27.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynold’s-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
(
3
), pp.
537
566
.
28.
Ibrahim
,
A. A.
, 2006, “
Comprehensive Study of Internal Flow Field and Linear and Nonlinear Instability of an Annular Liquid Sheet Emanating From an Atomizer
,” Ph.D. dissertation, University of Cincinnati.
29.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
(
2
), pp.
335
354
.
30.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
31.
Liao
,
Y.
,
Jeng
,
S. M.
,
Jog
,
M. A.
, and
Benjamin
,
M. A.
, 2001, “
Advanced Sub-Model for Airblast Atomizers
,”
J. Propul. Power
0748-4658,
17
, pp.
411
417
.
32.
Shen
,
J.
, and
Li
,
X.
, 1996, “
Instability of an Annular Viscous Liquid Jet
,”
Acta Mech.
0001-5970,
114
, pp.
167
183
.
33.
Ibrahim
,
A. A.
,
Jog
,
M. A.
, and
Jeng
,
S. M.
, 2006, “
Effect of Liquid Swirl Velocity Profile on the Instability of a Swirling Annular Liquid Sheet
,”
Atomization Sprays
1044-5110,
16
(
3
), pp.
237
263
.
34.
Ma
,
Z.
, 2002, “
Investigation on the Internal Flow Characteristics of Pressure Swirl Atomizers
,” Ph.D. dissertation, University of Cincinnati.
35.
Benjamin
,
M.
,
Mansour
,
A.
,
Samant
,
U.
,
Jha
,
S.
,
Liao
,
Y.
,
Harris
,
T.
, and
Jeng
,
S. M.
, 1998, “
Film Thickness, Droplet Size and Correlations for Large Pressure-Swirl Atomizers
,”
ASME/IGTI Conference and Exhibition
, Stockholm, Sweden, Paper No. 98-IG-537.
36.
Clark
,
C. J.
, and
Dombrowski
,
N.
, 1972, “
Aerodynamic Instability and Disintegration of Inviscid Liquid Sheets
,”
Proc. R. Soc. London, Ser. A
1364-5021,
329
, pp.
467
478
.
37.
Kim
,
D.
,
Han
,
P.
, and
Yoon
,
Y.
, 2003, “
Effect of Flow Condition and Geometry on Flow Characteristics of a Swirl Injector
,” ILASS Americas,
16th Annual Conference on Liquid Atomization and Spray Systems
, Monterey, CA.
38.
Gaster
,
M.
, 1962, “
A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability
,”
J. Fluid Mech.
0022-1120,
14
, pp.
222
.
39.
Ibrahim
,
A. A.
, and
Jog
,
M. A.
, 2006, “
Nonlinear Breakup of a Coaxial Liquid Jet in a Swirling Gas Stream
,”
Phys. Fluids
1070-6631,
18
, pp.
114101
.
You do not currently have access to this content.