Abstract
The conventional approach to neural network-based aircraft engine fault diagnostics has been mainly via multilayer feed-forward systems with sigmoidal hidden neurons trained by back propagation as well as radial basis function networks. In this paper, we explore two novel approaches to the fault-classification problem using (i) Fourier neural networks, which synthesizes the approximation capability of multidimensional Fourier transforms and gradient-descent learning, and (ii) a class of generalized single hidden layer networks (GSLN), which self-structures via Gram-Schmidt orthonormalization. Using a simulation program for the F404 engine, we generate steady-state engine parameters corresponding to a set of combined two-module deficiencies and require various neural networks to classify the multiple faults. We show that, compared to the conventional network architecture, the Fourier neural network exhibits stronger noise robustness and the GSLNs converge at a much superior speed.