The wake of asymmetric bluff bodies was experimentally measured using particle imaging velocimetry, laser Doppler anemometry, load cell, hotwire, and flow visualization techniques at Re=26008500 based on the freestream velocity and the characteristic height of the bluff bodies. Asymmetry is produced by rounding some corners of a square cylinder and leaving others unrounded. It is found that, with increasing corner radius, the flow reversal region is expanded, and the vortex formation length is prolonged. Accordingly, the vortex shedding frequency increases and the base pressure rises, resulting in a reduction in the mean drag as well as the fluctuating drag and lift. It is further found that, while the asymmetric cross section of the cylinder causes the wake centerline to shift toward the sharp corner side of the bluff body, the wake remains globally symmetric about the shifted centerline. The near wake of asymmetric bluff bodies is characterized in detail, including the Reynolds stresses, characteristic velocity, and length scale, and is further compared with that of the symmetric ones.

1.
Gad el Hak
,
M.
, 2000,
Flow Control: Passive, Active and Reactive Flow
,
Cambridge University Press
,
Cambridge, England
.
2.
Delany
,
N. K.
and
Sorensen
,
N. E.
1953 “
Low-Speed Drag of Cylinder of Various Shapes
,”
NACA
Technical Report No. TN-3038.
3.
Naudascher
,
E.
,
Weask
,
J. R.
, and
Fey
,
B.
, 1981, “
Exploratory Study on Damping of Galloping Vibrations
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
8
, pp.
211
222
.
4.
Kwok
,
K. C. S.
,
Wilhelm
,
P. A.
, and
Wilkie
,
B. G.
, 1988, “
Effect of Edge Configuration on Wind-Induced Response of a Tall Building
,”
Eng. Struct.
0141-0296,
10
, pp.
135
140
.
5.
Okamoto
,
S.
, and
Uemura
,
N.
, 1991, “
Effect of Rounding Side-Corners on Aerodynamic Forces and Turbulent Wake of a Cube Placed on a Ground Plane
,”
Exp. Fluids
,
11
, pp.
58
64
. 0723-4864
6.
Tamura
,
T.
,
Miyagi
,
T.
, and
Kitagishi
,
T.
, 1998, “
Numerical Prediction of Unsteady Pressures on a Square Cylinder With Various Corner Shapes
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
74–76
, pp.
531
542
.
7.
Tamura
,
T.
, and
Miyagi
,
T.
, 1999, “
The Effect of Turbulence on Aerodynamic Forces on a Square Cylinder With Various Corner Shapes
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
83
, pp.
135
145
.
8.
Zheng
,
W.
, and
Dalton
,
C.
, 1999, “
Numerical Prediction of Force on Rectangular Cylinders in Oscillating Viscous Flow
,”
J. Fluids Struct.
,
13
, pp.
225
249
. 0889-9746
9.
Bearman
,
P. W.
,
Graham
,
J. M. R.
,
Obasaju
,
E. D.
, and
Drossopoulos
,
G. M.
, 1984, “
The Influence of Corner Radius on the Forces Experienced by Cylindrical Bluff Bodies in Oscillatory Flow
,”
Appl. Ocean. Res.
,
6
, pp.
83
89
. 0141-1187
10.
Dalton
,
C.
, and
Zheng
,
W.
, 2003, “
Numerical Solutions of a Viscous Uniform Approach Flow Past Square and Diamond Cylinders
,”
J. Fluids Struct.
,
18
, pp.
455
565
. 0889-9746
11.
Hu
,
J. C.
,
Zhou
,
Y.
, and
Dalton
,
C.
, 2006, “
Effects of the Corner Radius on the Near Wake of a Square Prism
,”
Exp. Fluids
0723-4864,
40
, pp.
106
118
.
12.
Huang
,
J. F.
,
Zhou
,
Y.
, and
Zhou
,
T. M.
, 2006, “
Three-Dimensional Wake Structure Measurement Using a Modified PIV Technique
,”
Exp. Fluids
0723-4864,
40
, pp.
884
896
.
13.
Norberg
,
C.
, 1993, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
49
, pp.
187
196
.
14.
Bokaian
,
A.
, and
Geoola
,
F.
, 1984, “
Wake-Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
383
415
. 0022-1120
15.
Igarashi
,
T.
, 1981, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem
,”
Bull. JSME
,
24
(
188
), pp.
323
331
. 0021-3764
16.
Alam
,
M. M.
, 2004 “
Aerodynamics Characteristics and Suppression of Fluid Forces Acting on Two Bluff Bodies in Various Arrangements and Multistable Flow Detection by Wavelets
,” Ph.D. thesis, Kitami Institute of Technology, Japan.
17.
West
,
G. S.
, and
Apelt
,
C. J.
, 1997, “
Fluctuating Lift and Drag Forces on Finite Lengths of a Circular Cylinder in the Subcritical Reynolds Number Range
,”
J. Fluids Struct.
,
11
, pp.
135
158
. 0889-9746
18.
Mittal
,
R.
, and
Balanchandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
, pp.
1841
1865
.
19.
Schewe
,
G.
, 1983, “
On the Force Fluctuations Acting on a Circular Cylinder in Cross-Flow From Subcritical up to Transcritical Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
133
, pp.
265
285
.
20.
Surry
,
D.
, 1972, “
Some Effects of Intense Turbulent on the Aerodynamic of a Circular Cylinder at Subcritical Reynolds Number
,”
J. Fluid Mech.
0022-1120,
52
, pp.
543
563
.
21.
Laneville
,
A.
,
Gartshore
,
I. S.
, and
Parkinson
,
G. V.
, 1975 “
An Explanation of Some Effects of Turbulence on Bluff Bodies
,”
Proceedings of the Fourth International Conference Wind Effects on Buildings and Structure
, Heathrow, England, K75-363, pp.
333
341
.
22.
Roshko
,
A.
1954, “
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
,”
NACA
Technical Rerport No. TN-3169.
23.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
, 1995, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
0022-1120,
304
, pp.
285
319
.
24.
Zhou
,
Y.
, and
Antonia
,
R. A.
, 1994, “
Effect of Initial Conditions on Structures in a Turbulent Near-Wake
,”
AIAA J.
,
32
, pp.
1207
1213
. 0001-1452
25.
Zdravkovich
,
M. M.
, 1997,
Flow Around Circular Cylinders
(
Fundamentals
Vol.
1),
Oxford University Press
,
New York
.
26.
Schewe
,
G.
, and
Larsen
,
A.
, 1998, “
Reynolds Number Effects in the Flow Around a Bluff Bridge Deck Cross Section
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
74–76
, pp.
829
838
.
27.
Ahlborn
,
B.
,
Seto
,
L.
, and
Noack
,
R.
, 2002, “
On Drag, Strouhal Number and Vortex-Street Structure
,”
Fluid Dyn. Res.
0169-5983,
30
, pp.
379
399
.
28.
Bearman
,
P. W.
, 1965, “
Investigation of the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge and Fitted With Splitter Plates
,”
J. Fluid Mech.
,
31
, pp.
559
563
. 0022-1120
29.
Griffin
,
O. M.
, 1981, “
Universal Similarity in the Wakes of Stationary and Vibrating Bluff Structures
,”
ASME J. Fluids Eng.
,
103
, pp.
52
58
. 0098-2202
30.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
, 2003, “
The Effect of Flow Perturbations on the Near Wake Characteristics of a Circular Cylinder
,”
J. Fluids Struct.
,
18
, pp.
367
386
. 0889-9746
31.
Bloor
,
S. M.
, 1964, “
The Transition to Turbulence in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
19
, pp.
290
309
.
32.
Anderson
,
E. A.
, and
Szewczyk
,
A. A.
, 1996, “
A Look at a Universal Parameter for 2D and 3D Bluff Body Flows
,”
J. Fluids Struct.
,
10
, pp.
543
553
. 0889-9746
33.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
, 1974, “
The Vortex Street Wakes of a Vibrating Cylinders
,”
J. Fluid Mech.
,
66
, pp.
553
576
. 0022-1120
34.
Ramberg
,
S. E.
, 1983, “
The Effects of Yaw and Finite Length Upon the Vortex Wakes of Stationary and Vibrating Circular Cylinders
,”
J. Fluid Mech.
0022-1120,
128
, pp.
81
107
.
35.
Okajima
,
A.
, 1982, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
0022-1120,
123
, pp.
379
398
.
You do not currently have access to this content.