We present a coarse-grained steady-state solution framework for the Boltzmann kinetic equation based on a Newton-Broyden iteration. This approach is an extension of the equation-free framework proposed by Kevrekidis and coworkers, whose objective is the use of fine-scale simulation tools to directly extract coarse-grained, macroscopic information. Our current objective is the development of efficient simulation tools for modeling complex micro- and nanoscale flows. The iterative method proposed and used here consists of a short Boltzmann transient evolution step and a Newton-Broyden contraction mapping step based on the Boltzmann solution; the latter step only solves for the macroscopic field of interest (e.g., flow velocity). The predicted macroscopic field is then used as an initial condition for the Boltzmann solver for the next iteration. We have validated this approach for isothermal, one-dimensional flows in the low Knudsen number regime. We find that the Newton-Broyden iteration converges in O(10) iterations, starting from arbitrary guess solutions and a Navier-Stokes based initial Jacobian. This results in computational savings compared to time-explicit integration to steady states when the time to steady state is longer than O(40) mean collision times.

1.
Aoki
,
K.
,
Sone
,
Y.
,
Takata
,
S.
,
Takahashi
,
K.
, and
Bird
,
G. A.
, 2001, “
One-way Flow of a Rarefied Gas Induced in a Circular Pipe With Periodic Temperature Distribution
,”
Rarefied Gas Dynamics 23rd International Symposium
, T. J. Bartel and M. A. Gallis, eds., AIP, Melville, NY, pp.
940
947
.
2.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 2001,
“Micro-Electro-Mechanical Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
579
612
.
3.
Gallis
,
M. A.
,
Torczynski
,
J. R.
, and
Rader
,
D. J.
, 2006, “
An Approach for Simulating the Transport of Spherical Particles in a Rarefied Gas Flow Via the Direct Simulation Monte Carlo
,”
Phys. Fluids
1070-6631,
13
, pp.
3482
3492
.
4.
Al-Mohssen
,
H. A.
, and
Hadjiconstantinou
,
N. G.
, 2004, “
Arbitrary-Pressure Chemical Vapor Deposition Modeling Using Direct Simulation Monte Carlo With Nonlinear Surface Chemistry
,”
J. Comput. Phys.
0021-9991,
198
, pp.
617
627
.
5.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
, 1965,
Introduction to Physical Gas Dynamics
,
Krieger
, Melbourne, FL.
6.
Cercignani
,
C.
, 1988,
The Boltzmann Equation and its Applications
,
Springer-Verlag
, Berlin.
7.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon Press
, Oxford.
8.
Baker
,
L. L.
, and
Hadjiconstantinou
,
N. G.
, 2005, “
Variance Reduction for Monte Carlo Solutions of the Boltzmann Equation
,”
Phys. Fluids
1070-6631,
17
, p.
051703
.
9.
Hadjiconstantinou
,
N. G.
,
Garcia
,
A. L.
,
Bazant
,
M. Z.
, and
He
,
G.
, 2003, “
Statistical Error in Particle Simulations of Hydrodynamic Phenomena
,”
J. Comput. Phys.
0021-9991,
187
, pp.
274
297
.
10.
Theodoropoulos
,
K.
,
Qian
,
Y. H.
, and
Kevrekidis
,
I. G.
, 2000, “
‘Coarse’ Stability and Bifurcation Analysis Using Timesteppers: A Reaction Diffusion Example
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
18
), pp.
9840
9843
.
11.
Gear
,
C. W.
,
Kevrekidis
,
I. G.
, and
Theodoropoulos
,
C.
, 2002, “
‘Coarse’ Integration/Bifurcation Analysis Via Microscopic Simulators: Micro-Galerkin Methods
,”
Comput. Chem. Eng.
0098-1354,
26
, pp.
941
963
.
12.
Kevrekidis
,
I. G.
,
Gear
,
C. W.
,
Hyman
,
J. M.
,
Kevrekidis
,
P. G.
,
Runborg
,
O.
, and
Theodoropoulos
,
K.
, 2003, “
Equation-Free Coarse-Grained Multiscale Computation: Enabling Macroscopic Simulators to Perform System-Level Tasks
,”
Commun. Math. Sci.
1539-6746,
1
, pp.
715
762
;
original version can be obtained as physics/0209043 at arXiv.org.
13.
Kevrekidis
,
I. G.
,
Gear
,
C. W.
, and
Hummer
,
G.
, 2004, “
Equation-Free: The Computer Assisted Analysis of Complex, Multiscale Systems
,”
AIChE J.
0001-1541,
50
, pp.
1346
1355
.
14.
Gear
,
C. W.
,
Kaper
,
T. J.
,
Kevrekidis
,
I. G.
, and
Zagaris
,
A.
, 2005, “
Projecting on a Slow Manifold: Singularly Perturbed Systems and Legacy Codes
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
4
(
3
), pp.
711
732
.
15.
Aristov
,
V. V.
, 2001,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows
,
Kluwer
, Dordrecht.
16.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C
, 2nd ed.,
Cambridge University Press
, Cambridge, England.
17.
Kelley
,
C. T.
, 2003,
Solving Nonlinear Equations With Newton’s Method
,
SIAM
, Philadelphia.
18.
Wijesinghe
,
H. S.
, and
Hadjiconstantinou
,
N. G.
, 2004, “
Discussion of Hybrid Atomistic-Continuum Methods for Multiscale Hydrodynamics
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
2
, pp.
189
202
.
19.
Gear
,
C. W.
, and
Kevrekidis
,
I. G.
, 2005, “
Constraint-Defined Manifolds: A Legacy-Code Approach to Low-Dimensional Computations
,”
J. Sci. Comput.
0885-7474,
25
(
1
), pp.
17
28
.
20.
Erban
,
R.
,
Kevrekidis
,
I. G.
, and
Othmer
,
H. G.
, 2006, “
An Equation-Free Computational Approach for Extracting Population-Level Behavior From Individual-Based Models of Biological Dispersal
,”
Physica D
0167-2789,
215
, pp.
1
24
.
21.
Hadjiconstantinou
,
N. G.
, 2005, “
Validation of Second-Order Slip Model for Dilute Gas Flows
,”
Microscale Thermophys. Eng.
1089-3954,
9
, pp.
137
153
.
22.
Simoncini
,
V.
, and
Szyld
,
D. B.
, 2003, “
Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
25
, pp.
454
477
.
23.
van den Eshof
,
J.
, and
Sleijpen
,
G. L. G.
, 2004, “
Inexact Krylov Subspace Methods for Linear Systems
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
26
, pp.
125
153
.
24.
Bouras
,
A.
, and
Fraysse
,
V.
, 2005, “
Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
26
, pp.
660
678
.
25.
Sone
,
Y.
, 2002,
Kinetic Theory and Fluid Dynamics
,
Birkhauser
, Boston.
You do not currently have access to this content.