A molecular dynamics simulation of flow over two side-by-side cylinders with atomically rough surfaces is presented. The model is two-dimensional with 3×105 liquid argon atoms. The surface roughness is constructed by external protrusion of atoms on the surface of the cylinders with specified amplitude and width. Two cylinders, with diameters of d=79.44 (molecular units), are placed at a distance of D in a vertical line. The solids atoms are allowed to vibrate around their equilibrium coordinates to mimic the real solid structure. The influence of various parameters, such as roughness amplitude, topology, periodicity, and the gap between cylinders on the hydrodynamics of flow, especially drag and lift forces, is studied. It was noted that even very little surface roughness, with amplitude on the order of a few nanometers, can influence the drag forces. Both roughness texture and the number of roughening elements affects the drag and lift coefficients. The gap between the cylinders showed to be an effective parameter, especially on the lift force for flow over the nanoscale cylinders.

1.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
, 1990, “
On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
218
, pp.
71
107
.
2.
Wu
,
J. Z.
,
Tramel
,
R. W.
,
Zhu
,
F. L.
, and
Yin
,
X. Y.
, 2000, “
Vorticity Dynamics Theory of Three-Dimensional Flow Separation
,”
Phys. Fluids
1070-6631,
12
, pp.
1932
1954
.
3.
Saffman
,
P. G.
, and
Schatzman
,
J. C.
, 1982, “
Stability of a Vortex Street of Finite Vortices
,”
J. Fluid Mech.
0022-1120,
117
, pp.
171
185
.
4.
Jeon
,
D.
, and
Gharib
,
M.
, 2004, “
On the Relationship Between the Vortex Formation Process and Cylinder Wake Vortex Patterns
,”
J. Fluid Mech.
0022-1120,
519
, pp.
161
181
.
5.
Homescu
,
C.
,
Navon
,
I. M.
, and
Li
,
Z.
, 2002, “
Suppression of Vortex Shedding for Flow Around a Circular Cylinder Using Optimal Control
,”
Int. J. Numer. Methods Fluids
0271-2091,
38
, pp.
43
69
.
6.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
477
539
.
7.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
, 2004, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
413
455
.
8.
Oertel
,
H.
, 1999, “
Wakes Behind Blunt Bodies
,”
Annu. Rev. Fluid Mech.
0066-4189,
22
, pp.
539
562
.
9.
Zhou
,
Z.
,
So
,
R. M. C.
,
Liu
,
M. H.
, and
Zhang
,
H. J.
, 2000, “
Complex Turbulent Wakes Generated by Two and Three Side-by-Side Cylinders
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
125
133
.
10.
Choi
,
S.
,
Choi
,
H.
, and
Kang
,
S.
, 2002, “
Characteristics of Flow over a Rotationally Oscillating Cylinder at Low Reynolds Number
,”
Phys. Fluids
1070-6631,
14
, pp.
2767
2777
.
11.
Young
,
D. L.
, and
Huang
,
J. L.
, 2001, “
Simulation of Laminar Vortex Shedding Flow Past Cylinders Using a Coupled BEM and FEM Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
5975
5998
.
12.
Bailey
,
S. C. C.
,
Martinuzzi
,
R. J.
, and
Kopp
,
G. A.
, 2002, “
The Effects of Wall Proximity on Vortex Shedding From a Square Cylinder: Three-Dimensional Effects
,”
Phys. Fluids
1070-6631,
14
, pp.
4160
4177
.
13.
Summer
,
D.
,
Wong
,
S. S. T.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
, 1999, “
Fluid Behavior of Side-By-Side Circular Cylinders in Steady Cross-Flow
,”
J. Fluids Struct.
0889-9746,
13
, pp.
309
338
.
14.
Rapaport
,
D. C.
, and
Clementi
,
E.
, 1986, “
Eddy Formation of Obstructed Fluid Flow: A Molecular Dynamics Study
,”
Phys. Rev. Lett.
0031-9007,
57
, pp.
695
698
.
15.
Rapaport
,
D. C.
, 1987, “
Microscale Hydrodynamics: Discrete-Particle Simulation of Evolving Flow Patterns
,”
Phys. Rev. A
1050-2947,
36
, pp.
3288
3299
.
16.
Dzwinel
,
W.
,
Alda
,
W.
,
Pogoda
,
M.
, and
Yuen
,
D. A.
, 2000, “
Turbulent Mixing in the Microscale: A 2D Molecular Dynamics Simulation
,”
Physica D
0167-2789,
137
, pp.
157
171
.
17.
Hirshfeld
,
D.
, and
Rapaport
,
D. C.
, 2000, “
Molecular Dynamics Simulation of Taylor-Couette Vortex Formation
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
5337
5340
.
18.
Alda
,
W.
,
Dzwinel
,
W.
,
Kitowski
,
J.
,
Moscinski
,
J.
,
Pogoda
,
M.
, and
Yuen
,
D.
, 1998, “
Complex Fluid-Dynamical Phenomena Modeled by Large-Scale Molecular-Dynamics Simulations
,”
Comput. Phys.
0894-1866,
12
, pp.
595
599
.
19.
Hirshfeld
,
D.
, and
Rapaport
,
D. C.
, 2000, “
Growth of Taylor Vortices: A Molecular Dynamics Study
,”
Phys. Rev. E
1063-651X,
61
, pp.
R21
R24
.
20.
Moscinski
,
J.
,
Alda
,
W.
,
Bubak
,
M.
,
Dzwinel
,
W.
,
Kitowski
,
J.
,
Pogoda
,
M.
, and
Yuen
,
D. A.
, 1997, “
Moleculay Dynamics Simulations of Rayleigh-Taylor Instability
,”
Annu. Rev. Comput. Phys.
,
5
, pp.
23
60
.
21.
Kadau
,
K.
,
Germann
,
T. C.
,
Hadjiconstantinou
,
N. G.
,
Lomdahl
,
P. S.
,
Dimonte
,
G.
,
Holian
,
B. L.
, and
Alder
,
B. J.
, 2004, “
Nanohydrodynamics Simulations: An Atomistic View of the Rayleigh-Taylor Instability
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
5851
5855
.
22.
Kang
,
S.
, 2003, “
Characteristics of Flow Over Two Circular Cylinders in a Side-By-Side Arrangement at Low Reynolds Numbers
,”
Phys. Fluids
1070-6631,
15
, pp.
2486
2498
.
23.
Meiburg
,
E.
, 1986, “
Comparison of the Molecular Dynamics Method and the Direct Simulation Monte Carlo Technique for Flows Around Simple Geometries
,”
Phys. Fluids
0031-9171,
29
, pp.
3107
3113
.
24.
Beijeren
,
H. V.
, and
Dorfman
,
J. R.
, 1980, “
Kinetic Theory of Hydrodynamic Flows. I. The Generalized Normal Solution Method and Its Application to the Drag on a Sphere
,”
J. Stat. Phys.
0022-4715,
23
, pp.
335
402
.
25.
Beijeren
,
H. V.
, and
Dorfman
,
J. R.
, 1980, “
Kinetic Theory of Hydrodynamic Flows. II. The Drag on a Sphere and on a Cylinder
,”
J. Stat. Phys.
0022-4715,
23
, pp.
443
461
.
26.
Dorfman
,
J. R.
,
Sengers
,
J. V.
, and
McClure
,
C. F.
, 1986, “
Kinetic Theory of the Drag Force on Objects in Rarefied Gas Flows
,”
Physica A
0378-4371,
134
, pp.
283
322
.
27.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge, England
.
28.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford University Press
,
London
.
29.
Gala
,
T. M.
, and
Attard
,
P.
, 2004, “
Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid-Solid Boundary During Shear Flow
,”
Langmuir
0743-7463,
20
, pp.
3477
3482
.
30.
Hansen
,
J. P.
, and
McDonald
,
I. R.
, 1976,
Theory of Simple Liquids
,
Academic
,
London
.
31.
Ziarani
,
A. S.
, and
Mohamad
,
A. A.
, 2005, “
Nanohydrodynamics: The Effect of Solid Surface Roughness on Stability Flow
,”
Proc. of 13th Annual (International) Conference of Mechanical Engineering
, May 17–19,
Isfahan University of Technology
,
Isfahan, Iran
, pp.
1
8
.
32.
Heyes
,
D. M.
,
Morris
,
G. P.
, and
Evans
,
D. J.
, 1985, “
Nonequilibrium Molecular Dynamics Study of Shear Flow in Soft Disks
,”
Chem. Phys.
0301-0104,
83
, pp.
4760
4766
.
33.
Zdravkovich
,
M. M.
, 1985, “
Flow Induced Oscillations of Two Interfacing Circular Cylinders
,”
J. Sound Vib.
0022-460X,
101
, pp.
511
521
.
34.
White
,
F. M.
, 2003,
Fluid Mechanics
, 5th ed.,
McGraw-Hill
,
New York
.
35.
Lam
,
K. M.
,
Wong
,
P. T. Y.
, and
Ko
,
N. W. M.
, 1993, “
Interaction of Flows Behind Two Circular Cylinders of Different Diameters in Side-by-Side Arrangement
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
189
201
.
You do not currently have access to this content.