A large eddy simulation (LES) was applied to predict the unsteady flow in a low-speed axial-flow fan assembly subjected to a highly “turbulent” inflow that is generated by a turbulence grid placed upstream of the impeller. The dynamic Smagorinsky model (DSM) was used as the subgrid scale (SGS) model. A streamwise-upwind finite element method (FEM) with second-order accuracy in both time and space was applied as the discretization method together with a multi-frame of reference dynamic overset grid in order to take into account the effects of the blade-wake interactions. Based on a simple algebraic acoustical model for axial flow fans, the radiated sound power was also predicted by using the computed fluctuations in the blade force. The predicted turbulence intensity and its length scale downstream of the turbulence grid quantitatively agree with the experimental data measured by a hot-wire anemometry. The response of the blade to the inflow turbulence is also well predicted by the present LES in terms of the surface pressure fluctuations near the leading edge of the blade and the resulting sound power level. However, as soon as the effects of the turbulent boundary layer on the blades become important, the prediction tends to become inaccurate.

1.
Algermissen
,
G.
,
Siegert
,
R.
, and
Spindler
,
T.
, 2001, “
Numerical Simulation of Aeroacoustic Sound Generated by Fans under Installation Conditions
,” 7th AIAA/CEAS Aeroacoustic Conference, AIAA Paper No. 2001-2174, Maastricht, Netherlands, 28-30 May 2001.
2.
Kouidri
,
S.
,
Fedala
,
D.
,
Belamri
,
T.
, and
Rey
,
R.
, 2005, “
Comparative Study of the Aeroacoustic Behaviour of two Axial Flow Fans with Different Sweep Angles
,” ASME Fluid Engineering Summer Conference, Paper No. FEDSM2005-77424, Houston, TX, 19–23 June 2005.
3.
Fowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
, 1969, “
Sound Generated by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London
0962-8428,
264
, pp.
321
342
.
4.
You
,
D.
,
Wang
,
M.
,
Mittal
,
R.
, and
Moin
,
P.
, 2003, “
Study of Rotor Tip-Clearance Flow Using Large Eddy Simulation
,” 41st Aerospace Sciences Meeting and Exhibit, AIAA J. Paper No. 2003-0838, Reno, Nevada, 6–9 January 2003.
5.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
, 2002, “
Large Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,” The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9), Honolulu, HI, 10–14 February 2002.
6.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
, 2003, “
An Overset Finite Element Large Eddy Simulation Method with Application to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
32
43
.
7.
Yamanishi
,
N.
,
Kato
,
C.
, and
Matsumoto
,
Y.
, 2003, “
LES Analysis of a Rocket Turbopump Inducer in Non-Cavitating and Cavitating Flows
,” 4th ASME/JSME Joint Fluids Engineering Conference, ASME FEDSM2003-45406, Honolulu, HI, 6–11 July 2003.
8.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments with Primitive Equations
,”
Mon. Weather Rev.
0027-0644,
91
(
3
), pp.
99
164
.
9.
Germano
,
M.
,
Poimelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
A 3
(
7
), pp.
1760
1765
.
10.
Uddin
,
M. A.
,
Kato
,
C.
,
Taniguchi
,
N.
,
Yamade
,
Y.
, and
Tanahashi
,
M.
, 2004, “
Comparative Study of Finite Element LES with Spectral DNS in Homogenous Isotropic Turbulence
,” 2nd BSME-ASME International Conference on Thermal Engineering, Dhaka, 2–4 January 2004.
11.
Kato
,
C.
, and
Ikegawa
,
M.
, 1991, “
Large Eddy Simulation of Unsteady Turbulent Wake of a Circular Cylinder Using the Finite Element Method
,”
Advances in Numerical Simulation of Turbulent Flows
,
ASME
, New York, ASME FED- Vol.
117
, pp.
49
56
.
12.
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 1983, “
Finite Element Formulation for Convection Dominated Flows With Particular Emphasis on the Compressible Euler Equations
,”
Proceedings of AIAA 21st Aerospace Sciences Meeting
, AIAA Paper No. 83-0125, Reno, Nevada, 10–13 January 1983.
13.
Donea
,
J.
, et al.
, 1984, “
Time Accurate Solution of the Advection-Diffusion Problems by Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
45
, pp.
123
145
.
14.
Van der Vorst
,
H. A.
, 1992, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
13
, pp.
631
644
.
15.
Kaiho
,
M.
,
Ikegawa
,
M.
, and
Kato
,
C.
, 1997, “
Parallel Overlapping Scheme for Viscous Incompressible Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
1341
1352
.
16.
Stremel
,
M.
, 2002, “
Schaufelwechseldrücke und Schallabstrahlung bei einem Axialventilator unter turbulenter Zuströmung
,” Fortschr.-Ber. VDI Reihe 7 Nr. 439, VDI Verlag Düsseldorf.
17.
Schneider
,
M.
, and
Carolus
,
T.
, 2003, “
Calculation of Broadband Fan Noise due to Inflow Turbulence Employing Noise Prediction Models
,” Fan Noise 2003, Int. Symposium, Senlis, France, 22–25 September 2003.
18.
Roach
,
P. E.
, 1986, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
2
), pp.
82
92
.
19.
Washburn
,
K. B.
, and
Lauchle
,
G. C.
, 1988, “
Inlet Flow Conditions and Tonal Sound Radiation from a Subsonic Fan
,”
Noise Control Eng. J.
0736-2501,
31
(
2
), pp.
101
110
.
20.
Paterson
,
R. W.
, and
Amiet
,
R. K.
, 1977, “
Noise and Surface Pressure Response of an Airfoil to Incident Turbulence
,”
J. Aircr.
0021-8669,
14
(
8
), pp.
729
736
.
21.
Carolus
,
T. H.
, and
Stremel
,
M.
, 2003, “
Measurements of Surface Pressure Fluctuations—a Tool for Identifying Acoustic Sources in Fans
,” Fan Noise 2003, Int. Symposium, Senlis, France, 22–25 September 2003.
22.
Carolus
,
T. H.
, and
Stremel
,
M.
, 2002, “
Blade Surface Pressure Fluctuations and Acoustic Radiation from an Axial Fan Rotor Due to Turbulent Inflow
,”
Acta. Acust. Acust.
1610-1928,
88
, pp.
472
482
.
23.
Opiela
,
M.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2001, “
LES of Wake-Blade Interaction
,” 4th European Conference on Turbomachinery, Paper No. ATI-CST-086/01, Florence, 20–23 March 2001.
24.
Morfey
,
C. L.
, 1972, “
The Acoustic of Axial Flow Machines
,”
J. Sound Vib.
0022-460X,
22
(
4
), pp.
445
466
.
25.
Schneider
,
M.
, 2006, “
Der Einfluss der Zuströmbedingungen auf das breitbandige Geräusch eines Axialventilators
,” Fortschr.-Ber. VDI Reihe 7 Nr. 478, VDI Verlag Düsseldorf.
You do not currently have access to this content.