Velocity and pressure measurements are presented for a blade passage with and without leading edge contouring in a low speed linear cascade. The contouring is achieved through fillets placed at the junction of the leading edge and the endwall. Two fillet shapes, one with a linear streamwise cross-section (fillet 1) and the other with a parabolic cross-section (fillet 2), are examined. Measurements are taken at a constant Reynolds number of 233,000 based on the blade chord and the inlet velocity. Data presented at different axial planes include the pressure loss coefficient, axial vorticity, velocity vectors, and yaw and pitch angles. In the early stages of the development of the secondary flows, the fillets are seen to reduce the size and strength of the suction-side leg of the horseshoe vortex with associated reductions in the pressure loss coefficients and pitch angles. Further downstream, the total pressure loss coefficients and vorticity show that the fillets lift the passage vortex higher above the endwall and move it closer to the suction side in the passage. Near the trailing edge of the passage, the size and strength of the passage vortex is smaller with the fillets, and the corresponding reductions in pressure loss coefficients extend beyond the mid-span of the blade. While both fillets reduce pressure loss coefficients and vorticity, fillet 1 (linear fillet profile) appears to exhibit greater reductions in pressure loss coefficients and pitch angles.

1.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
2.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
3.
Sieverding
,
C. H.
, and
Bosche
,
V. P.
, 1983, “
The Use of Colored Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade
,”
J. Fluid Mech.
0022-1120,
134
, pp.
85
91
.
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
5.
Goldstein
,
R. J.
,
Wang
,
H. P.
, and
Jabbari
,
M. Y.
, 1995, “
The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport from a Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
117
(
4
), pp.
657
665
.
6.
Yamamoto
,
A.
, 1987, “
Production and Development of Secondary Flows and Losses in Two Types of Straight Turbine Cascades: Part 2- A Rotor Case
,”
ASME J. Turbomach.
0889-504X,
109
(
2
), pp.
194
200
.
7.
Gallus
,
H. E.
,
Zeschky
,
J.
, and
Hah
,
C.
, 1995, “
Endwall and Unsteady Flow Phenomena in an Axial Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
562
570
.
8.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade with High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
(
1
), pp.
173
183
.
9.
Ma
,
H.
,
Jiang
,
H.
, and
Qiu
,
Y.
, 2002, “
Visualizations of the Unsteady Flow Field Near the Endwall of a Turbine Cascade
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30350.
10.
Treiber
,
M.
,
Abhari
,
R. S.
, and
Sell
,
M.
, 2002, “
Flow Physics and Vortex Evolution in Annular Turbine Cascades
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30540.
11.
Kang
,
M. B.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
458
466
.
12.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
569
.
13.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
, 2002, “
Predictions of External Heat Transfer For Turbine Vanes and Blades With Secondary Flowfields
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30206.
14.
Hah
,
C.
, 1984, “
A Navier-Stokes Analysis of Three-Dimensional Turbulent Flows Inside Turbine Blade Rows at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
421
429
.
15.
Granovski
,
A. V.
, and
Kostege
,
M. K.
, 2002, “
Investigations of Flow Structure and Losses at the Endwall Sections of the Last Stage Blade
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30349.
16.
Davenport
,
W. J.
,
Agarwal
,
N. K.
,
Dewitz
,
M. B.
,
Simpson
,
R. L.
, and
Poddar
,
K.
, 1990, “
Effects of a Fillet on the Flow Past a Wing-Body Junction
,”
AIAA J.
0001-1452,
28
(
12
), pp.
2017
2024
.
17.
Simpson
,
R. L.
, 2001, “
Junction Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
33
, pp.
415
443
.
18.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
, 2001, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
207
213
.
19.
Eymann
,
S.
,
Förster
,
W.
,
Beversdorff
,
M.
,
Reinmöllar
,
U.
,
Niehuis
,
R.
, and
Gier
,
J.
, 2002, “
Improving 3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification- Part 1: Design and Experimental Investigation
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30352.
20.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
, 2003, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2003-38898.
21.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
, 2004, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
Proc. ASMR Turbo Expo
,
Paper No. GT-2004-53964.
22.
Zess
,
G. A.
, and
Thole
,
K. A.
, 2001, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2001-0404.
23.
Lethander
,
A. T.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
, 2003, “
Ortimizing the Vane-Endwall Junction to Reduce Adiabatic Wall Temperatures in a Turbine Vane Passage
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2003-38939.
24.
Shih
,
T.I-P.
, and
Lin
,
Y.-L.
, 2002, “
Controlling Secondary-Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,”
Proc. ASME Turbo Expo
,
Paper No. GT-2002-30529.
25.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
, 2005, “
Experimental Investigation of Flow Structure and Nusselt Number in a Low Speed Linear Blade Passage With and Without Leading Edge Fillets
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
499
512
.
26.
Ligrani
,
P. M.
,
Singer
,
B. A.
, and
Baun
,
L. R.
, 1989, “
Miniature Five-hole Pressure Probe for Measurement of Three Mean Velocity Components in Low-Speed Flows
,”
J. Phys. E
0022-3735,
22
, pp.
868
876
.
27.
Ligrani
,
P. M.
,
Singer
,
B. A.
, and
Baun
,
L. R.
, 1989, “
Spatial Resolution and Downwash Velocity Corrections for Multiple-Hole Pressure Probes in Complex Flows
,”
Exp. Fluids
0723-4864,
7
, pp.
424
426
.
28.
Holman
,
J. P.
, 2001,
Experimental Methods for Engineers
, 7th ed.,
McGraw Hill
, New York, pp.
51
77
.
29.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
(
1
), pp.
3
17
.
30.
Timko
,
L. P.
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” Contract Report for NASA, Report No. NASA CR-168289.
You do not currently have access to this content.