Granular materials exhibit unusual kinds of behavior, including pattern formations during the shaking of the granular materials; the characteristics of these various patterns are not well understood. Vertically shaken granular materials undergo a transition to convective motion that can result in the formation of bubbles. A detailed overview is presented of collective processes in gas-particle flows that are useful for developing a simplified model for molecular dynamic type simulations of dense gas-particle flows. The governing equations of the gas phase are solved using large eddy simulation technique. The particle motion is predicted by a Lagrangian method. Particles are assumed to behave as viscoelastic solids during interactions with their neighboring particles. Interparticle normal and tangential contact forces are calculated using a generalized Hertzian model. The other forces that are taken into account are gravitational and drag force resulting from velocity difference with the surrounding gas. A simulation of gas-particle flow is performed for predicting the flow dynamics of dense mixtures of gas and particles in a vertical, pentagonal, prism shaped, cylindrical container. The base wall of the container is subjected to sinusoidal oscillation in the vertical direction that spans to the bottom of the container. The model predicts the formation of oscillon type structures on the free surface. In addition, the incomplete structures are observed. Interpretations are proposed for the formation of the structures, which highlights the role played by the surrounding gas in dynamics of the shaken particles.

1.
Umbanhowar
,
P.
,
Melo
,
F.
, and
Swinney
,
H.
, 1996, “
Localized Excitations in Vertically Vibrated Granular Layer
,”
Nature (London)
0028-0836,
382
, pp.
739
796
.
2.
Fineberg
,
J.
, 1996, “
Physics in a Jumping Sandbox
,”
Nature (London)
0028-0836,
382
, pp.
763
764
.
3.
Aoki
,
K. M.
, and
Akiyama
,
T.
, 1996, “
Spontaneous Wave Pattern Formation in Vibrated Granular Materials
,”
Phys. Rev. Lett.
0031-9007,
77
, pp.
4166
4169
.
4.
Shinbrot
,
T.
, 1997, “
Competition Between Randomizing Impact and Inelastic Collision in Granular Pattern Formation
,”
Nature (London)
0028-0836,
389
, pp.
574
576
.
5.
Cerda
,
E.
,
Melo
,
F.
, and
Rica
,
S.
, 1997, “
Model for Subharmonic Waves in Granular Materials
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
4570
4573
.
6.
Tsimring
,
L.
, and
Aranson
,
I.
, 1997, “
Model for Subharmonic Waves in Granular Materials
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
213
216
.
7.
Venkataramani
,
S.
, and
Ott
,
E.
, 1998, “
Spatiotemporal Bifurcation Phenomena With Temporal Period Doubling: Patterns in Vibrated Sand
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3495
3498
.
8.
Rothman
,
D.
, 1998, “
Oscillons, Spiral Waves, and Stripes in a Model of Vibrated Sand
,”
Phys. Rev. E
1063-651X,
57
, pp.
R1239
R1242
.
9.
Bizon
,
C.
,
Shattuck
,
M. D.
,
Swift
,
J. B.
,
McCormick
,
W. D.
, and
Swinney
,
H. L.
, 1998, “
Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
57
60
.
10.
Schleier-Smith
,
J. M.
, and
Stone
,
H. A.
, 2001, “
Convection, Heaping, and Cracking in Vertically Vibrated Granular Slurries
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
3016
3019
.
11.
Faraday
,
M.
, 1831, “
Acoustic Streaming Over Vibrating Plates
,”
Philos. Trans. R. Soc. London
0370-2316,
121
, pp.
299
318
.
12.
Voth
,
G. A.
,
Bigger
,
B.
,
Buckley
,
M. R.
,
Losert
,
W.
,
Brenner
,
M. P.
,
Stone
,
H. A.
, and
Gollub
,
J. P.
, 2002, “
Ordered Clusters and Dynamical States of Particles in a Vibrated Fluid
,”
Phys. Rev. Lett.
0031-9007,
88
, pp.
234
301
.
13.
Zohdi
,
T. I.
, 2004, “
A Computational Framework for Agglomeration in Thermochemically Reacting Granular Flows
,” Proc. R. Soc. A: Math. Phys. Eng. Sci.,
460
, pp.
3421
3445
.
14.
Pak
,
H. K.
,
Van Doorn
,
E.
, and
Behringer
,
R. P.
, 1995, “
Effects of Ambient Gases on Granular Materials Under Vertical Vibration
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
4643
4646
.
15.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
, 2006, “
Complex Flow Dynamics in Dense Granular Flows—Part I: Experimentation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
648
657
.
16.
Phan-Thien
,
N.
, 2002,
Understanding Viscoelasticity
,
Springer
, Heidelberg.
17.
Zamankhan
,
P.
,
Soleymani
,
A.
,
Polashenski
,
W.
, Jr.
, and
Zamankhan
,
P.
, 2004, “
Flow Dynamics of Grains in Spinning Bucket at High Frequencies
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
235
246
.
18.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
, “
Dynamical Simulations of Vibrated Rough Spherical Glass Beads
,”
Phys. Rev. E
1063-651X (submitted).
19.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.-M.
, and
Pöschel
,
T.
, 1996, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
1063-651X,
53
, pp.
5382
5392
.
20.
Zamankhan
,
P.
, and
Huang
,
J.
, “
Complex Flow Dynamics in Dense Granular Flows, Part II: Simulations
,”
ASME J. Appl. Mech.
0021-8936, submitted.
21.
Dormand
,
J. R.
, and
Prince
,
P. J.
, 1980, “
A Family of Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
0377-0427,
6
, pp.
19
26
.
22.
Zamankhan
,
P.
, 1995, “
Kinetic Theory of Multicomponent Dense Mixtures of Slightly Inelastic Spherical Particles
,”
Phys. Rev. E
1063-651X,
52
, pp.
4877
4891
.
23.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
, Albuquerque, NM.
24.
Silbert
,
L. E.
,
Ertas
,
D
,
Grest
,
G. S.
,
Hasley
,
T. S.
,
Levin
,
D.
, and
Plimpton
,
S. J.
, 2001, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
1063-651X,
64
, p.
051302
.
25.
Einstein
,
A.
, 1905, “
Über die von der Molekularkinetischen Theorie der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen
,”
Ann. Phys.
0003-3804,
17
, pp.
549
560
.
26.
Zamankhan
,
P.
,
Polashenski
,
W.
, Jr.
,
Vahedi Tafreshi
,
H.
,
Shakib Manesh
,
A.
, and
Sarkomaa
,
P.
, 1998, “
Shear-Induced Particle Diffusion in Inelastic Hard Sphere Fluids
,”
Phys. Rev. E
1063-651X,
58
, pp.
R5237
R5240
.
27.
D’Anna
,
G.
,
Mayor
,
P.
,
Barrat
,
A.
,
Loreto
,
V.
, and
Nori
,
F.
, 2003, “
Observing Brownian Motion in Vibration-Fluidized Granular Matter
,”
Nature (London)
0028-0836,
424
, pp.
909
912
.
28.
Miller
,
B.
,
O’Hern
,
C.
, and
Behringer
,
R. P.
, 1996, “
Stress Fluctuations for Continuously Sheared Granular Materials
,”
Phys. Rev. Lett.
0031-9007,
77
, pp.
3110
3113
.
29.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tannka
,
T.
,
Kajlshima
,
T.
, and
Tsuji
,
Y.
, 2001, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions
,”
J. Fluid Mech.
0022-1120,
442
, pp.
303
334
.
30.
Speziale
,
C. G.
,
Erlebacher
,
G.
,
Zang
,
T. A.
, and
Hussaini
,
M. Y.
, 1988, “
The Subgrid-Scale Modeling of Compressible Turbulence
,”
Phys. Fluids
0031-9171,
31
, pp.
940
942
.
You do not currently have access to this content.