Computations of the time-averaged and phase-averaged fluid flow and heat transfer based on large eddy simulation (LES) are presented for turbulent flows past a square cylinder with and without a nearby wall at a fixed Reynolds number of 2.2×104. The finite-volume technique was used to solve the time-dependent filtered compressible Navier-Stokes equations with a dynamic subgrid-scale turbulence model, and the numerical fluxes were computed using alternating in time the second-order, explicit MacCormack’s and the modified Godunov’s scheme. Results show some improvements in predicting the streamwise evolutions of the long-time-averaged streamwise mean velocity and total fluctuation intensity along the centerline over those predicted by using Reynolds stress models. A better overall centerline streamwise mean velocity distribution is also predicted by the present LES than by other LES. The wall proximity effect is studied through the comparison of turbulent wake flow past one free standing cylinder and one with a nearby wall, and is illustrated by the phase-averaged spanwise vorticity components and the vortex celerity of spanwise vortices. Moreover, documentation is given on the mechanisms responsible for the augmentation of heat transfer through the spanwise and longitudinal vortices as well as periodic and random fluctuations.

1.
Suzuki, K., 1996, “Flow Modification and Heat Transfer Enhancement with Vortices,” The Ninth International Symposium on Transport Phenomena in Thermal-Fluids Engineering, Singapore, June 25–28, pp. 72–83.
2.
Liou
,
T. M.
,
Wang
,
W. B.
, and
Chang
,
Y. J.
,
1995
, “
Holographic Interferometry Study of Spatially Periodic Heat Transfer in a Channel with Ribs Detached from One Wall
,”
ASME J. Heat Transfer
,
117
, 1995, pp.
32
39
.
3.
Fiebig
,
M.
,
1996
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
, pp.
376
388
.
4.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Tsai
,
T. W.
,
2000
, “
Heat Transfer and Fluid Flow in a Square Duct with 12 Different Shaped Vortex Generators
,”
ASME J. Heat Transfer
,
122
, pp.
327
335
.
1.
Rodi
,
W.
,
1993
, “
On the Simulation of Turbulent Flow Past Bluff Bodies
,”
J. Wind. Eng. Ind. Aerodyn.
,
46
, pp.
3
19
.
2.
1993
,
47
,
3
19
.
1.
Franke, R., and Rodi, W., 1993, “Calculation of Vortex Shedding Past a Square Cylinder with Various Turbulence Models,” Turbulent Shear Flow 8, Durst, F. et al., eds, Springer-Verlag, New York, pp. 189–204.
2.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
, pp.
491
511
.
3.
Tamura
,
T.
,
Ohta
,
I.
,
Kuwahara
,
K.
,
1990
, “
On the reliability of Two-Dimensional Simulation for Unsteady Flows Around a Cylinder-type Structure
,”
J. Wind. Eng. Ind. Aerodyn.
,
35
, pp.
275
298
.
4.
Murakami, S., Mochida, A., Rodi, W., Franke, R., 1993, “Large Eddy Simulation of Turbulent Vortex Shedding Flow Past 2D Square Cylinders,” Engineering Applications of Large Eddy Simulation, FED-Vol. 162, ASME, pp. 113–120.
5.
Rodi
,
W.
,
Ferziger
,
J. H.
,
Breuer
,
M.
, and
Pourquie
,
M.
,
1997
, “
Status of Large Eddy Simulation: Results of a Workshop
,”
ASME J. Fluids Eng.
,
119
, No.
2
, pp.
248
262
.
6.
Durao
,
D. F. G.
,
Heitor
,
M. V.
, and
Pereira
,
J. C. F.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Exp. Fluids
,
6
, pp.
298
304
.
7.
Lyn
,
D. A.
, and
Rodi
,
W.
,
1994
, “
The Flapping Shear Layer Formed by Flow Separation from the Forward Corner of a Square Cylinder
,”
J. Fluid Mech.
,
267
, pp.
353
376
.
8.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.
9.
Durao
,
D. F. G.
,
Gouveia
,
P. S. T.
, and
Pereira
,
J. C. F.
,
1991
, “
Velocity Characteristics of the Flow Around a Square Cross Section Cylinder Placed Near a Channel Wall
,”
Exp. Fluids
,
11
, pp.
341
350
.
10.
Devarakonda
,
R.
, and
Humphrey
,
J. A. C.
,
1996
, “
Turbulent Flow in the Near Wakes of Single and Tandem Prisms
,”
Int. J. Heat Fluid Flow
,
17
, pp.
219
227
.
11.
Bosch
,
G.
,
Kappler
,
M.
, and
Rodi
,
W.
,
1996
, “
Experiments on the Flow Past a Square Cylinder Placed Near a Wall
,”
Exp. Therm. Fluid Sci.
,
13
, pp.
292
305
.
12.
Bosch
,
G.
, and
Rodi
,
W.
,
1996
, “
Simulation of vortex shedding past a square cylinder near a wall
,”
Int. J. Heat Fluid Flow
,
17
, pp.
267
275
.
13.
Kato, M., and Launder, B. E., 1993, “The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders,” Proceeding 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 10-4, 1993.
14.
Liou
,
T. M.
,
Lien
,
W. Y.
, and
Hwang
,
P. W.
,
1995
, “
Compressibility Effects and Mixing Enhancement in Turbulent Free Shear Flows
,”
AIAA J.
,
33
, No.
12
, pp.
2332
2338
.
15.
Liou
,
T. M.
,
Lien
,
W. Y.
, and
Hwang
,
P. W.
,
1994
, “
Large-Eddy Simulations of Turbulent Reacting Flows in a Chamber with Gaseous Ethylene Injection through the Porous Wall
,”
Combust. Flame
,
99
, pp.
591
600
.
16.
Liou
,
T. M.
,
Lien
,
W. Y.
, and
Hwang
,
P. W.
,
1997
, “
Flammability Limits and Probability Density Functions in Simulated Solid-Fuel Ramjet Combustors
,”
J. Propul. Power
,
13
, No.
5
, pp.
643
650
.
17.
Liou
,
T. M.
,
Yang
,
C. P.
, and
Lee
,
H. L.
,
1997
, “
LDV Measurements of Spatially Periodic Flows Over a Detached Solid-Rib Array
,”
ASME J. Fluids Eng.
,
119
, pp.
383
389
.
18.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with the Primitive Equations
,”
Mon. Weather Rev.
,
91
, No.
3
, pp.
99
164
.
19.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
, No.
3
, pp.
633
635
.
20.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, No.
7
, pp.
1760
1765
.
21.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
, pp.
241
258
.
22.
Liou, T. M., Lien, W. Y., and Hwang, P. W., 1994, “A Modified Godunov’s Scheme for Shock Tube Flows and Turbulent Combustion Flows,” The Fourth National Conference on Combustion Science and Technology, Hsinchu, Taiwan, Republic of China, pp. 242–247.
23.
Tsai
,
Y. P.
, and
Christiansen
,
W. H.
,
1990
, “
Two-Dimensional Numerical Simulation of Shear-Layer Optics
,”
AIAA J.
,
28
, No.
12
, pp.
2092
2097
.
24.
Werner, H., and Wengle, H., 1993, “Large-Eddy Simulations of Turbulent Flow Over and Around a Cube in a Plate Channel,” Turbulent Shear Flow 8, Durst, F. et al., eds, Springer-Verlag, New York, pp. 155–168.
25.
Liou
,
T. M.
, and
Chen
,
S. H.
,
1998
, “
Turbulent Flow Past an Array of Bluff Bodies Aligned Along the Channel Axis
,”
ASME J. Fluids Eng.
,
120
, No.
3
, pp.
520
530
.
26.
Craft
,
T. J.
, and
Launder
,
B. E.
,
1992
, “
New Wall-Reflection Model Applied to the Turbulent Impinging Jet
,”
AIAA J.
,
30
, pp.
2970
2975
.
27.
Lyn, D. A., 1989, “Phase-Averaged Turbulence Measurements in the Separated Shear Layer Region of Flow Around a Square Cylinder,” Proceedings of 23rd Congress of International Association for Hydraulic Research, Ottawa, Canada, 21–25 August, A85–A92.
28.
Yao
,
M.
,
Nakatani
,
M.
, and
Suzuki
,
K.
,
1995
, “
Flow Visualization and Heat Transfer Experiments in a Turbulent Channel Flow Obstructed With an Inserted Square Rod
,”
Int. J. Heat Fluid Flow
,
16
, pp.
389
397
.
29.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1994
, “
The Effect of Embedded Longitudinal Vortex Arrays on Turbulent Boundary Layer Heat Transfer
,”
ASME J. Heat Transfer
,
116
, pp.
871
879
.
You do not currently have access to this content.