Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-5 of 5
Keywords: artificial neural networks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. May 2024, 146(5): 052701.
Paper No: JERT-23-1873
Published Online: March 22, 2024
...Gabriel Gomes Vargas; Pablo Silva Ortiz; Silvio de Oliveira, Jr. This study assesses renewable hydrogen production via gasification of residual biomass, using artificial neural networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn...
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. August 2022, 144(8): 083002.
Paper No: JERT-21-1799
Published Online: November 12, 2021
... is to develop an artificial neural network (ANN) model for predicting the drillstring vibration while drilling a horizontal section. The ANN model uses the surface drilling parameters as model inputs to predict the three types of drillstring vibrations. These surface drilling parameters are flowrate, mud...
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. January 2022, 144(1): 013201.
Paper No: JERT-21-1250
Published Online: September 30, 2021
... not be recorded for every well. However, drilling data are available in real-time for every well using real-time drilling sensors. The main objective of this paper is to predict sonic slowness logs in real-time based on the drilling data using artificial neural network (ANN). The data used in this study were...
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. September 2021, 143(9): 093002.
Paper No: JERT-20-1977
Published Online: April 29, 2021
... for the TOC from the linear regression analysis. This new correlation was developed based on the artificial neural networks (ANNs) algorithm which was learned on 750 datasets from Well-A. The developed correlation was tested and validated on 226 and 73 datasets from Well-B and Well-C, respectively...
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Energy Resour. Technol. November 2019, 141(11): 112904.
Paper No: JERT-18-1920
Published Online: May 20, 2019
...’ parameters. According to the feature ranking process, out of the 25 variables studied, 19 variables had the highest impact on ROP based on their ranges within this dataset. Second, a new model that is able to predict the ROP using real field data, which is based on artificial neural networks (ANNs...