Abstract

As an important and effective way of mitigating water shortages, desalination has steadily and rapidly increased its global capacity over the decades. This raises concern about its environmental impacts, especially its carbon footprint (CF). Although the CF of desalination has been extensively studied, the existing literature lacks reviews exclusively for it. To help fill the research gap, this study presents a comprehensive and up-to-date review of the CF of seawater desalination technologies, including the conventional reverse osmosis (RO), multi-stage flash (MSF), multi-effect distillation (MED), electrodialysis (ED), and mechanical vapor compression (MVC), and the emerging membrane distillation (MD) and humidification–dehumidification (HDH). To our knowledge, this is the first review that focuses on the CF of seawater desalination. A general procedure for assessing the CF of a desalination system is discussed. The CF data of 211 scenarios from 34 studies published from 2004 to 2023 are reviewed and analyzed, with special focuses on the CF of different technologies, the roles of different life-cycle phases and material/energy flows, and the mitigation measures. The results highlight the CF advantage of RO and low-carbon heat-driven MSF, MED, and MD, and emphasize the dominant role of the operational energy consumption (the amount, the form, and especially the source of the energy) in the CF of desalination. This review improves the understanding of the CF of seawater desalination technologies and of the ways to reduce it.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
World Meteorological Organization
,
2021
,
State of Climate Services: Water
,
World Meteorological Organization
,
Geneva, Switzerland
.
2.
Jones
,
E.
,
Qadir
,
M.
,
van Vliet
,
M. T. H.
,
Smakhtin
,
V.
, and
Kang
,
S.
,
2019
, “
The State of Desalination and Brine Production: A Global Outlook
,”
Sci. Total Environ.
,
657
, pp.
1343
1356
.
3.
Ayaz
,
M.
,
Namazi
,
M. A.
,
ud Din
,
M. A.
,
Ershath
,
M. I. M.
,
Mansour
,
A.
, and
Aggoune
,
M.
,
2022
, “
Sustainable Seawater Desalination: Current Status, Environmental Implications and Future Expectations
,”
Desalination
,
540
, p.
116022
.
4.
Eke
,
J.
,
Yusuf
,
A.
,
Giwa
,
A.
, and
Sodiq
,
A.
,
2020
, “
The Global Status of Desalination: An Assessment of Current Desalination Technologies, Plants and Capacity
,”
Desalination
,
495
, p.
114633
.
5.
International Desalination Association
,
2009
, “
Global Water Crisis Promotes Desalination Boom
,”
Membr. Technol.
,
2009
(
1
), pp.
10
11
.
6.
The International Organization for Standardization
,
2018
,
ISO 14067: Greenhouse Gases – Carbon Footprint of Products – Requirements and Guidelines for Quantification
,
The International Organization for Standardization
,
Geneva, Switzerland
.
7.
The Global Clean Water Desalination Alliance
,
2017
, http://www.water-climate-alliances.org/sites/default/files/gcwda_brochure_october_2017.pdf, Accessed January 7, 2024.
8.
The Global Clean Water Desalination Alliance
,
2018
, “H2O minus CO2,” http://www.clca.columbia.edu/Global-Water.pdf, Accessed January 7, 2024.
9.
Lienhard
,
J. H.
,
Thiel
,
G. P.
,
Warsinger
,
D. M.
, and
Banchik
,
L. D.
,
2016
,
Low Carbon Desalination: Status and Research, Development, and Demonstration Needs
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
United Nations
,
2015
, The Paris Agreement.
11.
Cornejo
,
P. K.
,
Santana
,
M. V. E.
,
Hokanson
,
D. R.
,
Mihelcic
,
J. R.
, and
Zhang
,
Q.
,
2014
, “
Carbon Footprint of Water Reuse and Desalination: A Review of Greenhouse Gas Emissions and Estimation Tools
,”
J. Water Reuse Desalin.
,
4
(
4
), pp.
238
252
.
12.
Elsaid
,
K.
,
Kamil
,
M.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Olabi
,
A.
,
2020
, “
Environmental Impact of Desalination Technologies: A Review
,”
Sci. Total Environ.
,
748
, p.
141528
.
13.
Lee
,
K.
, and
Jepson
,
W.
,
2021
, “
Environmental Impact of Desalination: A Systematic Review of Life Cycle Assessment
,”
Desalination
,
509
, p.
115066
.
14.
Aziz
,
N. I. H. A.
, and
Hanafiah
,
M. M.
,
2021
, “
Application of Life Cycle Assessment for Desalination: Progress, Challenges and Future Directions
,”
Environ. Pollut.
,
268
, p.
115948
.
15.
Nassrullah
,
H.
,
Anis
,
S. F.
,
Hashaikeh
,
R.
, and
Hilal
,
N.
,
2020
, “
Energy for Desalination: A State-of-the-Art Review
,”
Desalination
,
491
, p.
114569
.
16.
Shahzad
,
M. W.
,
Burhan
,
M.
,
Ang
,
L.
, and
Ng
,
K. C.
,
2017
, “
Energy-Water-Environment Nexus Underpinning Future Desalination Sustainability
,”
Desalination
,
413
, pp.
52
64
.
17.
Al-Karaghouli
,
A.
, and
Kazmerski
,
L. L.
,
2013
, “
Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
343
356
.
18.
Pinto
,
F. S.
, and
Marques
,
R. C.
,
2017
, “
Desalination Projects Economic Feasibility: A Standardization of Cost Determinants
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
904
915
.
19.
Mir
,
N.
, and
Bicer
,
Y.
,
2021
, “
Integration of Electrodialysis With Renewable Energy Sources for Sustainable Freshwater Production: A Review
,”
J. Environ. Manage.
,
289
, p.
112496
.
20.
González
,
D.
,
Amigo
,
J.
, and
Suárez
,
F.
,
2017
, “
Membrane Distillation: Perspectives for Sustainable and Improved Desalination
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
238
259
.
21.
Skuse
,
C.
,
Gallego-Schmid
,
A.
,
Azapagic
,
A.
, and
Gorgojo
,
P.
,
2021
, “
Can Emerging Membrane-Based Desalination Technologies Replace Reverse Osmosis?
,”
Desalination
,
500
, p.
114844
.
22.
Amaya-Vías
,
D.
, and
López-Ramírez
,
J. A.
,
2019
, “
Techno-Economic Assessment of Air and Water Gap Membrane Distillation for Seawater Desalination Under Different Heat Source Scenarios
,”
Water
,
11
, p.
2117
.
23.
Alrbai
,
M.
,
Hayajneh
,
H. S.
,
Al-Dahidi
,
S.
, and
Alahmer
,
A.
,
2022
, “
Thermodynamics Analysis of a Lab Scale Humidification-Dehumidification Desalination System Employing Solar Energy and Fogging Approach
,”
Sol. Energy
,
247
, pp.
397
407
.
24.
Li
,
G.
, and
Zhang
,
L.
,
2016
, “
Investigation of a Solar Energy Driven and Hollow Fiber Membrane-Based Humidification–Dehumidification Desalination System
,”
Appl. Energy
,
177
, pp.
393
408
.
25.
Xu
,
H.
,
Sun
,
X. Y.
, and
Dai
,
Y. J.
,
2019
, “
Thermodynamic Study on an Enhanced Humidification-Dehumidification Solar Desalination System With Weakly Compressed Air and Internal Heat Recovery
,”
Energy Convers. Manage.
,
181
, pp.
68
79
.
26.
Rahimi-Ahar
,
Z.
,
Hatamipour
,
M. S.
, and
Ahar
,
L. R.
,
2020
, “
Air Humidification-Dehumidification Process for Desalination: A Review
,”
Prog. Energy Combust. Sci.
,
80
, p.
100850
.
27.
Ahmed
,
F. E.
,
Hashaikeh
,
R.
, and
Hilal
,
N.
,
2020
, “
Hybrid Technologies: The Future of Energy Efficient Desalination – A Review
,”
Desalination
,
495
, p.
114659
.
28.
Cipollina
,
A.
,
Micale
,
G.
, and
Rizzuti
,
L.
,
2009
,
Seawater Desalination: Conventional and Renewable Energy Processes
,
Springer-Verlag
,
Berlin, Germany
.
29.
Lawal
,
D. U.
,
Antar
,
M. A.
,
Ismaila
,
K. G.
,
Khalifa
,
A.
, and
Alawad
,
S. M.
,
2023
, “
Hybrid Multi-Stage Flash (MSF) and Membrane Distillation (MD) Desalination System for Energy Saving and Brine Minimization
,”
Desalination
,
548
, p.
116231
.
30.
Darwish
,
M. A.
,
Al Asfour
,
F.
, and
Al-Najem
,
N.
,
2002
, “
Energy Consumption in Equivalent Work by Different Desalting Methods: Case Study for Kuwait
,”
Desalination
,
152
, pp.
83
92
.
31.
Giacalone
,
F.
,
Catrini
,
P.
,
Gurreri
,
L.
,
Tamburini
,
A.
,
Cipollina
,
A.
,
Micale
,
G.
, and
Piacentino
,
A.
,
2022
, “
Exergy Analysis of Electrodialysis for Water Desalination: Influence of Irreversibility Sources
,”
Energy Convers. Manage.
,
258
, p.
115314
.
32.
Yadav
,
A.
,
Labhasetwar
,
P. K.
, and
Shahi
,
V. K.
,
2021
, “
Membrane Distillation Using Low-Grade Energy for Desalination: A Review
,”
J. Environ. Chem. Eng.
,
9
, p.
105818
.
33.
Khalifa
,
A. E.
,
Alawad
,
S. M.
,
Hussein
,
A.
, and
Antar
,
M. A.
,
2023
, “
Vacuum-Assisted Multistage Membrane Distillation With Bubble Column Dehumidifier for Efficient Water Production
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022106
.
34.
Dehghani
,
S.
,
Mahmoudi
,
F.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2020
, “
Experimental Performance Evaluation of Humidification–Dehumidification System With Direct-Contact Dehumidifier
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012005
.
35.
Institution
,
B. S.
,
2011
,
PAS 2050: Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services
,
British Standards Institution
,
London, UK
.
36.
World Resources Institute, and World Business Council for Sustainable Development
,
2011
,
Greenhouse Gas Protocol: Product Life Cycle Accounting and Reporting Standard
,
World Resources Institute and World Business Council for Sustainable Development
,
USA
.
37.
Zhou
,
J.
,
Chang
,
V. W.-C.
, and
Fane
,
A. G.
,
2014
, “
Life Cycle Assessment for Desalination: A Review on Methodology Feasibility and Reliability
,”
Water Res.
,
61
, pp.
210
223
.
38.
Intergovernmental Panel on Climate Change
,
2013
,
Climate Change 2013: The Physical Science Basis
,
Cambridge University Press
,
NY
, Chap. 8.
39.
Raluy
,
R. G.
,
Serra
,
L.
,
Uche
,
J.
, and
Valero
,
A.
,
2004
, “
Life-Cycle Assessment of Desalination Technologies Integrated With Energy Production Systems
,”
Desalination
,
167
, pp.
445
458
.
40.
Raluy
,
R. G.
,
Serra
,
L.
, and
Uche
,
J.
,
2005
, “
Life Cycle Assessment of Desalination Technologies Integrated With Renewable Energies
,”
Desalination
,
183
(
1–3
), pp.
81
93
.
41.
Raluy
,
G.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Life Cycle Assessment of MSF, MED and RO Desalination Technologies
,”
Energy
,
31
(
13
), pp.
2361
2372
.
42.
Muñoz
,
I.
, and
Fernández-Alba
,
A. R.
,
2008
, “
Reducing the Environmental Impacts of Reverse Osmosis Desalination by Using Brackish Groundwater Resources
,”
Water Res.
,
42
, pp.
801
811
.
43.
Stokes
,
J. R.
, and
Horvath
,
A.
,
2009
, “
Energy and Air Emission Effects of Water Supply
,”
Environ. Sci. Technol.
,
43
(
8
), pp.
2680
2687
.
44.
Lyons
,
E.
,
Zhang
,
P.
,
Benn
,
T.
,
Sharif
,
F.
,
Li
,
K.
,
Crittenden
,
J.
,
Costanza
,
M.
, and
Chen
,
Y. S.
,
2009
, “
Life Cycle Assessment of Three Water Supply Systems: Importation, Reclamation and Desalination
,”
Water Sci. Technol.: Water Supply
,
9
(
4
), pp.
439
448
.
45.
Biswas
,
W. K.
,
2009
, “
Life Cycle Assessment of Seawater Desalinization in Western Australia
,”
Int. J. Econ. Manag. Eng.
,
3
(
8
), pp.
231
237
.
46.
Meneses
,
M.
,
Pasqualino
,
J. C.
,
Céspedes-Sánchez
,
R.
, and
Castells
,
F.
,
2010
, “
Alternatives for Reducing the Environmental Impact of the Main Residue From a Desalination Plant
,”
J. Ind. Ecol.
,
14
(
3
), pp.
512
527
.
47.
Beery
,
M.
, and
Repke
,
J.
,
2010
, “
Sustainability Analysis of Different SWRO Pre-Treatment Alternatives
,”
Desalin. Water Treat.
,
16
, pp.
218
228
.
48.
Tarnacki
,
K.
,
Meneses
,
M.
,
Melin
,
T.
,
van Medevoort
,
J.
, and
Jansen
,
A.
,
2012
, “
Environmental Assessment of Desalination Processes: Reverse Osmosis and Memstill®
,”
Desalination
,
296
, pp.
69
80
.
49.
Salcedo
,
R.
,
Antipova
,
E.
,
Boer
,
D.
,
Jiménez
,
L.
, and
Guillén-Gosálbez
,
G.
,
2012
, “
Multi-Objective Optimization of Solar Rankine Cycles Coupled With Reverse Osmosis Desalination Considering Economic and Life Cycle Environmental Concerns
,”
Desalination
,
286
, pp.
358
371
.
50.
Antipova
,
E.
,
Boer
,
D.
,
Cabeza
,
L. F.
,
Guillén-Gosálbez
,
G.
, and
Jiménez
,
L.
,
2013
, “
Multi-Objective Design of Reverse Osmosis Plants Integrated With Solar Rankine Cycles and Thermal Energy Storage
,”
Appl. Energy
,
102
, pp.
1137
1147
.
51.
Shahabi
,
M. P.
,
McHugh
,
A.
,
Anda
,
M.
, and
Ho
,
G.
,
2014
, “
Environmental Life Cycle Assessment of Seawater Reverse Osmosis Desalination Plant Powered by Renewable Energy
,”
Renewable Energy
,
67
, pp.
53
58
.
52.
Shahabi
,
M. P.
,
Anda
,
M.
, and
Ho
,
G.
,
2015
, “
Influence of Site-Specific Parameters on Environmental Impacts of Desalination
,”
Desalin. Water Treat.
,
55
, pp.
2357
2363
.
53.
Shahabi
,
M. P.
,
McHugh
,
A.
,
Anda
,
M.
, and
Ho
,
G.
,
2015
, “
Comparative Economic and Environmental Assessments of Centralised and Decentralised Seawater Desalination Options
,”
Desalination
,
376
, pp.
25
34
.
54.
Shahabi
,
M. P.
,
McHugh
,
A.
, and
Ho
,
G.
,
2015
, “
Environmental and Economic Assessment of Beach Well Intake Versus Open Intake for Seawater Reverse Osmosis Desalination
,”
Desalination
,
357
, pp.
259
266
.
55.
Li
,
Y.
,
Xiong
,
W.
,
Zhang
,
W.
,
Wang
,
C.
, and
Wang
,
P.
,
2016
, “
Life Cycle Assessment of Water Supply Alternatives in Water-Receiving Areas of the South-to-North Water Diversion Project in China
,”
Water Res.
,
89
, pp.
9
19
.
56.
Shahabi
,
M. P.
,
McHugh
,
A.
,
Anda
,
M.
, and
Ho
,
G.
,
2017
, “
A Framework for Planning Sustainable Seawater Desalination Water Supply
,”
Sci. Total Environ.
,
575
, pp.
826
835
.
57.
Goga
,
T.
,
Friedrich
,
E.
, and
Buckley
,
C. A.
,
2019
, “
Environmental Life Cycle Assessment for Potable Water Production – A Case Study of Seawater Desalination and Mine-Water Reclamation in South Africa
,”
Water SA
,
45
(
4
), pp.
700
709
.
58.
Al-Kaabi
,
A. H.
, and
Mackey
,
H. R.
,
2019
, “
Environmental Assessment of Intake Alternatives for Seawater Reverse Osmosis in the Arabian Gulf
,”
J. Environ. Manage.
,
242
, pp.
22
30
.
59.
Tarpani
,
R. R. Z.
,
Lapolli
,
F. R.
,
Recio
,
MÁL
, and
Gallego-Schmid
,
A.
,
2021
, “
Comparative Life Cycle Assessment of Three Alternative Techniques for Increasing Potable Water Supply in Cities in the Global South
,”
J. Cleaner Prod.
,
290
, p.
125871
.
60.
Ghani
,
L. A.
,
Ali
,
N.
,
Nazaran
,
I. S.
, and
Hanafiah
,
M. M.
,
2021
, “
Environmental Performance of Small-Scale Seawater Reverse Osmosis Plant for Rural Area Water Supply
,”
Membranes
,
11
, p.
40
.
61.
Thi
,
H. T. D.
,
Pasztor
,
T.
,
Fozer
,
D.
,
Manenti
,
F.
, and
Toth
,
A. J.
,
2021
, “
Comparison of Desalination Technologies Using Renewable Energy Sources With Life Cycle, PESTLE, and Multi-Criteria Decision Analyses
,”
Water
,
13
, p.
3023
.
62.
Najjar
,
E.
,
Al-Hindi
,
M.
,
Massoud
,
M.
, and
Saad
,
W.
,
2021
, “
Life Cycle Assessment of a Seawater Reverse Osmosis Plant Powered by a Hybrid Energy System (Fossil Fuel and Waste to Energy)
,”
Energy Rep.
,
7
, pp.
448
465
.
63.
Najjar
,
E.
,
Al-Hindi
,
M.
,
Massoud
,
M.
, and
Saad
,
W.
,
2022
, “
Life Cycle Assessment and Cost of a Seawater Reverse Osmosis Plant Operated With Different Energy Sources
,”
Energy Convers. Manage.
,
268
, p.
115964
.
64.
Bordbar
,
B.
,
Khosravi
,
A.
,
Orkomi
,
A. A.
, and
Peydayesh
,
M.
,
2022
, “
Life Cycle Assessment of Hybrid Nanofiltration Desalination Plants in the Persian Gulf
,”
Membranes
,
12
, p.
467
.
65.
Fayyaz
,
S.
,
Masjedi
,
S. K.
,
Kazemi
,
A.
,
Khaki
,
E.
,
Moeinaddini
,
M.
, and
Olsen
,
S. I.
,
2023
, “
Life Cycle Assessment of Reverse Osmosis for High-Salinity Seawater Desalination Process: Potable and Industrial Water Production
,”
J. Cleaner Prod.
,
382
, p.
135299
.
66.
Nasrollahi
,
M.
,
Motevali
,
A.
,
Banakar
,
A.
, and
Montazeri
,
M.
,
2023
, “
Comparison of Environmental Impact on Various Desalination Technologies
,”
Desalination
,
547
, p.
116253
.
67.
Skuse
,
C.
,
Tarpani
,
R. R. Z.
,
Gorgojo
,
P.
,
Gallego-Schmid
,
A.
, and
Azapagic
,
A.
,
2023
, “
Comparative Life Cycle Assessment of Seawater Desalination Technologies Enhanced by Graphene Membranes
,”
Desalination
,
551
, p.
116418
.
68.
Mannan
,
M.
,
Alhaj
,
M.
,
Mabrouk
,
A. N.
, and
Al-Ghamdi
,
S. G.
,
2019
, “
Examining the Life-Cycle Environmental Impacts of Desalination: A Case Study in the State of Qatar
,”
Desalination
,
452
, pp.
238
246
.
69.
Alhaj
,
M.
, and
Al-Ghamdi
,
S. G.
,
2019
, “
Integrating Concentrated Solar Power With Seawater Desalination Technologies: A Multi-Regional Environmental Assessment
,”
Environ. Res. Lett.
,
14
(
7
), p.
074014
.
70.
Alhaj
,
M.
,
Tahir
,
F.
, and
Al-Ghamdi
,
S. G.
,
2022
, “
Life-Cycle Environmental Assessment of Solar-Driven Multi-Effect Desalination (MED) Plant
,”
Desalination
,
524
, p.
115451
.
71.
Ai
,
C.
,
Zhao
,
L.
,
Song
,
D.
,
Han
,
M.
,
Shan
,
Q.
, and
Liu
,
S.
,
2023
, “
Identifying Greenhouse Gas Emission Reduction Potentials Through Large-Scale Photovoltaic-Driven Seawater Desalination
,”
Sci. Total Environ.
,
857
(
Part 3
), p.
159402
.
72.
Liang
,
Y.
,
Xu
,
J.
,
Luo
,
X.
,
Chen
,
J.
,
Yang
,
Z.
, and
Chen
,
Y.
,
2022
, “
Cradle-to-Grave Life Cycle Assessment of Membrane Distillation Systems for Sustainable Seawater Desalination
,”
Energy Convers. Manage.
,
266
, p.
115740
.
73.
Heihsel
,
M.
,
Lenzen
,
M.
,
Malik
,
A.
, and
Geschke
,
A.
,
2019
, “
The Carbon Footprint of Desalination: An Input-Output Analysis of Seawater Reverse Osmosis Desalination in Australia for 2005–2015
,”
Desalination
,
454
, pp.
71
81
.
74.
Xue
,
N.
,
Lu
,
J.
,
Gu
,
D.
,
Lou
,
Y.
,
Yuan
,
Y.
,
Li
,
G.
,
Kumagai
,
S.
,
Saito
,
Y.
,
Yoshioka
,
T.
, and
Zhang
,
N.
,
2023
, “
Carbon Footprint Analysis and Carbon Neutrality Potential of Desalination by Electrodialysis for Different Applications
,”
Water Res.
,
232
, p.
119716
.
You do not currently have access to this content.