Abstract

Herringbone wells are effective in improving productivity for bottom water reservoirs; however, the main problem faced in the exploitation of bottom water reservoir is the ridge and cone of bottom water during the process of waterflooding, which leads to the decline of oil production. Therefore, predicting the breakthrough time and location of herringbone wells in bottom water reservoirs and then adjusting the water injection measures are of great significance for improving production and development. In this paper, we establish a three-dimensional coning model of bottom water to study the dynamic performance of bottom water rise, and the sequence of breakthrough position is determined by studying the breakthrough time along the wellbore. Based on the reservoir numerical simulation, we carry out a comprehensive adjustment of the water injection mechanism and develop a water injection scheme under the combination arrangement of vertical wells and herringbone wells. The results show that the bottom water breakthrough position of the branch well is mainly near the heel of the main branch or near the middle subsidence, and the recovery rate is the highest when the branch angle is 45 deg. The longer the shut-in time, the higher the recovery. The study is of great significance to optimize the layout and spatial structure, determine a reasonable working system, delay water channeling, and increase the cumulative production of herringbone wells.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yu
,
F.
,
Huang
,
G.
,
Ni
,
H.
,
Nie
,
Z.
,
Li
,
W.
,
Li
,
J.
, and
Jiang
,
W.
,
2020
, “
Analysis of the Main Factors Affecting Bottom Hole Assembly Re-Entry Into Main Hole in Forward Drilling of Fishbone Wells
,”
J. Petrol. Sci. Eng.
,
189
, p.
107018
.
2.
Kazem
,
M. H.
,
Hussein
,
M. A.
,
Adnan
,
M. S.
,
Alfarge
,
D.
, and
Mansour
,
I. J.
,
2023
, “
The Performance of Streamline Simulation Technique to Mimic the Waterflooding Management Process in Oil Reservoirs
,”
Fuel
,
348
, p.
128556
.
3.
Li
,
S.
,
Guo
,
Y.
,
Wu
,
D.
,
Liu
,
L.
, and
Zhang
,
N.
,
2024
, “
Enhanced Gas Production From Silty Clay Hydrate Reservoirs Using Multi-Branch Wells Combined With Multi-Stage Fracturing: Influence of Fracture Parameters
,”
Fuel
,
357
(
PA
), p.
129705
.
4.
He
,
Y.
,
Qiao
,
Y.
,
Qin
,
J.
,
Tang
,
Y.
,
Wang
,
Y.
, and
Chai
,
Z.
,
2021
, “
A Novel Method to Enhance Oil Recovery by Inter-Fracture Injection and Production Through the Same Multi-Fractured Horizontal Well
,”
ASME. J. Energy Resour. Technol.
,
144
(
4
), p.
043005
.
5.
Wang
,
K.
,
Li
,
K.
,
Zhou
,
W.
,
Zhu
,
G.
,
Pan
,
Y.
,
Fan
,
H.
,
Gao
,
Y.
,
Tang
,
J.
,
Xu
,
L.
, and
You
,
Q.
,
2020
, “
Quantitative Evaluation on the Evolution of Water Cone Behavior in a Heavy Oil Reservoir With Bottom Water
,”
ASME. J. Energy Resour. Technol.
,
142
(
6
), p.
063004
.
6.
Yue
,
P.
,
Jia
,
B.
,
Sheng
,
J.
,
Lei
,
T.
, and
Tang
,
C.
,
2019
, “
A Coupling Model of Water Breakthrough Time for a Multilateral Horizontal Well in a Bottom Water-Drive Reservoir
,”
J. Petrol. Sci. Eng.
,
177
, pp.
317
330
.
7.
Yue
,
P.
,
Guo
,
C.
,
Cheng
,
X.
, and
Tang
,
L.
,
2020
, “
A Transient Flow Model for Multilateral Horizontal Wells in Bottom Water Drive Reservoirs
,”
Int. J. Oil, Gas Coal Technol.
,
24
(
1
), pp.
1
17
.
8.
Moosavi
,
S. R.
,
Vaferi
,
B.
, and
Wood
,
D. A.
,
2020
, “
Auto-Detection Interpretation Model for Horizontal Oil Wells Using Pressure Transient Responses
,”
Adv. Geo-Energy Res.
,
4
(
3
), pp.
305
316
.
9.
Faraji
,
M.
,
Rezagholilou
,
A.
,
Ghanavati
,
M.
,
Kadkhodaie
,
A.
, and
Wood
,
D. A.
,
2021
, “
Breakouts Derived From Image Logs Aid the Estimation of Maximum Horizontal Stress: A Case Study From Perth Basin, Western Australia
,”
Adv. Geo-Energy Res.
,
5
(
1
), pp.
8
24
.
10.
Lyu
,
Z.
,
Song
,
X.
,
Geng
,
L.
, and
Li
,
G.
,
2019
, “
Optimization of Multilateral Well Configuration in Fractured Reservoirs
,”
J. Petrol. Sci. Eng.
,
172
, pp.
1153
1164
.
11.
Liu
,
X.
, and
Hu
,
P.
,
2011
, “
A 3-D Visible Physical Experiment on Horizontal Wells of Heterogeneous Reservoirs With Bottom Water
,”
Acta Petrolei Sin.
,
32
(
6
), pp.
1012
1016
.
12.
Chaperon
,
I.
,
1986
, “
Theoretical Study of Coning] Toward Horizontal and Vertical Wells in Anisotropic Formations: Subcritical and Critical Rates
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 5–8
.
13.
Bahadori
,
A.
,
2010
, “
Determination of Well Placement and Breakthrough Time in Horizontal Wells for Homogeneous and Anisotropic Reservoirs
,”
J. Petrol. Sci. Eng.
,
75
(
1–2
), pp.
196
202
.
14.
Goodarzian
,
S.
,
Ghalambor
,
A.
, and
Izadi
,
M.
,
2012
, “
Analysis of Parameters Affecting Critical Flow Rate in a Horizontal Well: Case Study in Ahwaz Oil Field
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 15–17
.
15.
Muskat
,
M.
, and
Wycokoff
,
R. D.
,
1935
, “
An Approximate Theory of Water-Coning in Oil Production
,”
Trans. AIME
,
114
(
1
), pp.
144
163
.
16.
Yue
,
P.
,
Du
,
Z.
,
Chen
,
X.
, et al
,
2015
, “
A Coupling Model of Fishbone Multilateral Horizontal Well in Bottom Water Reservoir
,”
J. Southwest Petrol. Univ.
,
37
(
4
), pp.
117
126
.
17.
Yue
,
P.
,
Yang
,
H.
,
He
,
C.
,
Yu
,
G. M.
,
Sheng
,
J. J.
,
Guo
,
Z. L.
,
Guo
,
C. Q.
, and
Chen
,
X. F.
,
2020
, “
Theoretical Approach for the Calculation of the Pressure Drop in a Multibranch Horizontal Well with Variable Mass Transfer
,”
ACS Omega
,
5
(
45
), pp.
29209
29221
.
18.
Yue
,
P.
,
Zhou
,
J.
,
Kang
,
L. X.
,
Liu
,
P.
,
Chunsheng
,
J.
, and
Chen
,
X.
,
2021
, “
Reservoir and Wellbore Flow Coupling Model for Fishbone Multilateral Wells in Bottom Water Drive Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
123001
.
19.
Cheng
,
L.
,
Lang
,
Z.
, and
Zhang
,
L.
,
1994
, “
Reservoir Engineering Research on Horizontal Well Coning in Bottom Water Drive Reservoirs
,”
J. Univ. Petrol.
,
4
, pp.
43
47
.
20.
Zheng
,
Q.
,
Liu
,
H.
,
Xue
,
H.
, et al
,
2012
, “
Identification of Water Flooding Along Horizontal Wells in Bottom Water Reservoirs
,”
Oil and Gas Geology and Recovery Efficiency
,
19
(
1
), pp.
95
98
.
21.
Zhai
,
L.
,
Yang
,
M.
,
Yan
,
C.
,
Tian
,
T.
, and
Huang
,
S.
,
2022
, “
Dynamic Distribution Characteristics of Oil and Water During Water Flooding in a Fishbone Well With Different Branch Angles
,”
ACS Omega
,
7
(
31
), pp.
27206
27215
.
22.
Tan
,
Y.
,
Li
,
Q.
,
Li
,
H.
,
Zhou
,
X.
, and
Jiang
,
B.
,
2020
, “
A Semi-Analytical Model Based on the Volumetric Source Method to Predict Acid Injection Profiles of Horizontal Wells in Carbonate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053001
.
23.
Liu
,
W.
,
Liu
,
W. D.
, and
Gu
,
J.
,
2020
, “
A Machine Learning Method to Infer Inter-Well Connectivity Using Bottom-Hole Pressure Data
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103007
.
24.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2018
, “
Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME. J. Energy Resour. Technol.
,
140
(
8
), p.
082902
.
25.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2020
, “
Stabilized Water-Cut in Carbonate Naturally Fractured Reservoirs With Bottom Water With an Implication in Well Spacing Design for Recovery Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033003
.
26.
Hao
,
Y.
,
Yang
,
F.
,
Wang
,
J.
,
Fan
,
M.
,
Li
,
S.
,
Yang
,
S.
,
Wang
,
C.
, and
Xiao
,
X.
,
2022
, “
Dynamic Analysis of Exploitation of Different Types of Multilateral Wells of a Hydrate Reservoir in the South China sea
,”
Energy Fuels
,
36
(
12
), pp.
6083
6095
.
27.
Al-Rbeawi
,
S.
, and
Artun
,
E.
,
2019
, “
Fishbone Type Horizontal Wellbore Completion: A Study for Pressure Behavior, Flow Regimes, and Productivity Index
,”
J. Petrol. Sci. Eng.
,
176
, pp.
172
202
.
28.
Zhou
,
Z.
,
Cui
,
C.
,
Zheng
,
D.
,
Li
,
K.
,
Xuan
,
Y.
, and
Wang
,
C.
,
2023
, “
Transient Productivity Analysis and Completion Parameter Optimization of Perforating Herringbone Wells
,”
ACS Omega
,
8
(
20
), pp.
17841
17855
.
29.
Jiang
,
B.
,
Li
,
H.
,
Zhang
,
N.
,
Zhou
,
X.
,
Wang
,
Y.
, and
Tan
,
Y.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
30.
Wojtanowicz
,
A. K.
,
Shirman
,
E.
, and
Kurban
,
H.
,
2014
, “
Enhancing Oil Recovery With Bottom Water Drainage Completion
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042906
.
31.
Wojtanowicz
,
A. K.
, and
Shirman
,
E. I.
,
2002
, “
Inflow Performance and Pressure Interference in Dual-Completed Wells With Water Coning Control
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
253
261
.
You do not currently have access to this content.