Abstract

Based on the principle of cyclone separation and 3D printing technology, a novel variable pitch hydrocyclone structure was proposed for the axial flow hydrocyclone separators of oil wells. The structural parameters of this variable pitch hydrocyclone were optimized via a combined approach of the Plackett–Burman design, response surface design, and computational fluid dynamics. A quadratic polynomial mathematical relationship between significant structural parameters and separation efficiency was established. The effects of the inlet flowrate, split ratio, and oil phase volume fraction on oil–water separation performance were systematically analyzed. A laboratory test system for oil–water swirl separation was constructed to verify the accuracy of numerical simulation results and the efficiency of the optimized structure. The optimal overflow split ratio, inlet flowrate, and oil concentration for the hydrocyclone are 30%, 96 m3/day, and 2%, respectively. The combination of these optimal parameters results in an experimental separation efficiency of 99.38%, which is higher than that of the conventional structure (98.8%). The experimental results are in good agreement with the simulation results.

References

1.
Liu
,
H.
,
Hao
,
Z. X.
,
Wang
,
L. G.
, and
Cao
,
G.
,
2015
, “
Current Technical Status and Development Trend of Artificial Lift
,”
Acta Petrol. Sin.
,
36
(
11
), pp.
1441
1448
.
2.
Huang
,
H.
,
Ma
,
H. L.
,
Li
,
C. C.
,
Duan
,
R. J.
, and
Wang
,
R. S.
,
2022
, “
Corrosion Prediction and Monitoring Methods of High Water-Cut Crude Oil Gathering and Transportation Pipelines
,”
Sci. Technol. Eng.
,
22
(
18
), pp.
8050
8055
.
3.
Yang
,
S. R.
, and
Xie
,
W.
,
2011
, “
Optimization Design of Oil-Water Separator for Injection-Production in the Same Well
,”
Spec. Oil Gas Reservoirs
,
18
(
6
), pp.
106
108
.
4.
Li
,
X.
,
Zhang
,
J.
,
Chang
,
J.
,
Wang
,
L.
,
Wu
,
L.
,
Cui
,
L.
, and
Jia
,
D.
,
2023
, “
Optimization of Automatic Well Pattern Deployment in High Water-Cut Oilfield
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
112904
.
5.
Zhang
,
F. Y.
,
Zou
,
L. J.
,
Rui
,
Z. H.
,
Hamid
,
E. M.
,
Luis
,
F. A.
, and
Zhang
,
Z. X.
,
2023
, “
A Two-Phase Type-Curve Method With Multiscale Fluid Transport Mechanisms in Hydraulically Fractured Shale Reservoirs
,”
Pet. Sci.
,
20
(
4
), pp.
2253
2267
.
6.
Zhang
,
F. Y.
, and
Emami-Meybodi
,
H.
,
2022
, “
A Type-Curve Method for Two-Phase Flowback Analysis in Hydraulically Fractured Hydrocarbon Reservoirs
,”
J. Pet. Sci. Eng.
,
209
, p.
109912
.
7.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.
8.
Yu
,
H.
,
Xu
,
W. L.
,
Li
,
B.
,
Huang
,
H. W.
,
Micheal
,
M.
,
Wang
,
Q.
,
Huang
,
M. C.
,
Meng
,
S. W.
,
Liu
,
H.
, and
Wu
,
H. A.
,
2023
, “
Hydraulic Fracturing and Enhanced Recovery in Shale Reservoirs: Theoretical Analysis to Engineering Applications
,”
Energy Fuels
,
37
(
14
), pp.
9956
9997
.
9.
Zhang
,
F. Y.
, and
Emami-Meybodi
,
H.
,
2022
, “
Semianalytical Method of Two-Phase Liquid Transport in Shale Reservoirs and Its Application in Fracture Characterization
,”
AIChE J.
,
682
(
2
), p.
17449
.
10.
Zhao
,
L. X.
,
Li
,
F.
,
Ma
,
Z. Z.
, and
Hu
,
Y. Q.
,
2010
, “
Theoretical Analysis and Experimental Study of Dynamic Hydrocyclones
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042901
.
11.
Li
,
S. H.
,
Liu
,
Z. M.
,
Chang
,
Y. L.
,
Li
,
J. P.
,
Hu
,
J. K.
,
Shen
,
Q. S.
, and
Wang
,
H. L.
,
2021
, “
Removal of Coke Powders in Coking Wastewater Using a Hydrocyclone Optimized by n-Value
,”
Sci. Total Environ.
,
752
, p.
141887
.
12.
Almilly
,
R. F.
, and
Chasib
,
M. I.
,
2023
, “
Application of Hydrocyclone in Chemical Precipitation
,”
Sep. Sci. Technol.
,
58
(
5
), pp.
995
1003
.
13.
Menéndez-Aguado
,
L. D.
,
Marina Sánchez
,
M.
,
Rodríguez
,
M. A.
,
Coello Velázquez
,
A. L.
, and
Menéndez-Aguado
,
J. M.
,
2019
, “
Recycled Mineral Raw Materials From Quarry Waste Using Hydrocyclones
,”
Materials
,
12
(
13
), p.
2047
.
14.
Patra
,
G.
,
Barnwal
,
R.
,
Behera
,
S. K.
, and
Meikap
,
B. C.
,
2018
, “
Removal of Dyes From Aqueous Solution by Sorption With Fly Ash Using a Hydrocyclone
,”
J. Environ. Chem. Eng.
,
6
(
4
), pp.
5204
5211
.
15.
Ji
,
L.
,
Paul
,
P.
,
Shanbhag
,
B. K.
,
Dixon
,
I.
,
Kuang
,
S.
, and
He
,
L.
,
2023
, “
Emerging Application of Hydrocyclone in Biotechnology and Food Processing
,”
Sep. Purif. Technol.
,
309
, p.
122992
.
16.
Shelton
,
J.
,
Smith
,
J. R.
, and
Gupta
,
A.
,
2011
, “
Experimental Evaluation of Separation Methods for a Riser Dilution Approach to Dual Density Drilling
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031501
.
17.
Song
,
M. H.
,
Zhao
,
L. X.
,
Xu
,
B. R.
,
Liu
,
L.
, and
Zhang
,
S.
,
2021
, “
Discussion on Technology of Improving Separation Efficiency of Liquid-Liquid Hydrocyclone
,”
Chem. Ind. Eng. Prog.
,
40
(
12
), pp.
6590
6603
.
18.
Liu
,
H.
,
Gao
,
Y.
,
Pei
,
X. H.
,
Zheng
,
G. X.
, and
Zheng
,
L. C.
,
2018
, “
Progress and Prospect of Downhole Cyclone Oil-Water Separation With Single Well Injection Production Technology
,”
Acta Petrol. Sin.
,
39
(
4
), pp.
463
471
.
19.
Li
,
X. Y.
,
Xing
,
L.
,
Jiang
,
M. H.
, and
Zhao
,
L. X.
,
2023
, “
Research on Performance of Downhole Oil-Water Separation Hydrocyclone Enhanced by Inverted Cone Gas Injection
,”
CIESC J.
,
74
(
3
), pp.
1134
1144
.
20.
Zeng
,
X. B.
,
Zhao
,
L.
,
Zhao
,
W. G.
, and
Hou
,
M. W.
,
2020
, “
Experimental Study on a Novel Axial Separator for Oil-Water Separation
,”
Ind. Eng. Chem. Res.
,
59
(
48
), p.
1021
.
21.
Zhang
,
M.
,
Cheng
,
X. P.
,
Yang
,
W. Y.
,
Zhang
,
F. H.
,
Guo
,
P. W.
, and
Shen
,
Q.
,
2021
, “
Numerical Investigation on the Swirler Parameters for an Axial Liquid-Liquid Hydrocyclone
,”
IOP Conf. Ser. Earth Environ. Sci.
,
675
(
1
), p.
012210
.
22.
Luo
,
X. M.
,
Ren
,
J.
,
Lv
,
Y. L.
, and
He
,
L. M.
,
2021
, “
Study on Characteristics of Cylindrical Cyclone Separator Based on the Evaluation of Water Separation Effect
,”
J. Eng. Thermophys.
,
42
(
10
), pp.
2605
2614
.
23.
Xing
,
L.
,
Li
,
J. Y.
,
Zhao
,
L. X.
,
Jiang
,
M. H.
, and
Han
,
G. X.
,
2021
, “
Structural Optimization of Downhole Hydrocyclones Based on Response Surface Methodology
,”
Chin. Mech. Eng.
,
32
(
15
), pp.
1818
1826
.
24.
Yang
,
Z. M.
,
He
,
L. M.
,
Tian
,
Y. Y.
, and
Luo
,
X. M.
,
2020
, “
Numerical Simulation of Separation Characteristics of Heavy Oil in Cylindrical Cyclone Separator
,”
Oil Gas Storage Transp.
,
39
(
3
), pp.
319
325
.
25.
Wooldridge
,
M.
,
Wangenheim
,
C.
,
Herberg
,
W.
, and
Wettmarshausen
,
T.
,
2020
, “
Applications of Metal Additive Manufacturing in the Oil and Gas Industry
,”
Offshore Technology Conference
,
Houston, TX
,
May 4–7
.
26.
Acharya
,
S.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2020
, “
Design and Process Optimization for Additive Manufacturing in Oil and Gas Industry
,”
Offshore Technology Conference
,
Houston, TX
,
May 4–7
.
27.
Bekkulov
,
A.
,
Luthen
,
A.
, and
Xu
,
B.
,
2019
, “
Experimental Study of Condensation in a Thermoacoustic Cooler With Various 3D-Printed Regenerators Using Water Vapor as the Working Fluid
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050904
.
28.
Abbas
,
A. I.
,
Amano
,
R. S.
,
Saravani
,
M. S.
,
Qandil
,
M. D.
, and
Sakamoto
,
T.
,
2019
, “
Optimization of Kaplan Hydroturbine at Very Low Head With Rim-Driven Generator
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111204
.
29.
Vega-Garcia
,
D.
,
Brito-Parada
,
P. R.
, and
Cilliers
,
J. J.
,
2018
, “
Optimising Small Hydrocyclone Design Using 3D Printing and CFD Simulations
,”
Chem. Eng. J.
,
350
, pp.
653
659
.
30.
Syed
,
M. S.
,
Mirakhorli
,
F.
,
Marquis
,
C.
,
Taylor
,
R. A.
, and
Warkiani
,
M. E.
,
2020
, “
Particle Movement and Fluid Behavior Visualization Using an Optically Transparent 3D-Printed Micro-Hydrocyclone
,”
Biomicrofluidics
,
14
(
6
), p.
064106
.
31.
Li
,
Y. Y.
, and
Hu
,
C. R.
,
2005
,
Experiment Design and Data Processing
,
Chemical Industry Press
,
Beijing
.
32.
Liu
,
Z. T.
,
Tian
,
Y. Y.
, and
Song
,
W.
,
2021
, “
Study on Relationship Between Cyclone Diameter and Treatment Capacity Based on Response Surface Method
,”
Chin. Pet. Mech.
,
49
(
12
), pp.
89
97
.
You do not currently have access to this content.