Abstract

With the increasing exploration and development of tight sandstone gas reservoirs, it is of utmost importance to clarify the characteristics of “sweet spots” within tight gas reservoirs. Considering the complex lithology of tight gas reservoirs, fast phase transformations of sedimentary facies, and vital diagenetic transformation, there is a low success rate of reservoir prediction in the lateral direction, and heterogeneity evaluation is challenging. Establishing a convenient standard for reservoir interpretation in the early stages of development is complex, making designing hydraulic fracturing in the later phases a challenge. In this paper, we propose a detailed study of the engineering and geological double sweet spots (DSS) analysis system and the optimization of sweet spot parameters using the independent weight coefficient method. K-means++ algorithm and Gaussian mixture gradient algorithm unsupervised machine learning algorithms are used to determine the classification standard of general reservoirs and high-quality sweet spot reservoirs in the lower 1 layer of He-8 in the x block of the Sulige gas field. This application of the field example illustrates that the proposed double sweet spot classification and evaluation method can be applied to locate the reservoir’s sweet spot accurately.

References

1.
Ma
,
X.
,
Jia
,
A.
,
Tan
,
J.
, and
He
,
D.
,
2012
, “
Tight Sand Gas Development Technology and Practices in China
,”
Pet. Explor. Dev.
,
39
(
5
), pp.
611
618
.
2.
Cui
,
Y.
,
Lu
,
C.
,
Wu
,
M.
,
Peng
,
Y.
,
Yao
,
Y.
, and
Luo
,
W.
,
2018
, “
Review of Exploration and Production Technology of Natural Gas Hydrate
,”
Adv. Geo-Energy Res.
,
2
(
1
), pp.
53
62
.
3.
Abuamarah
,
B. A.
,
Nabawy
,
B. S.
,
Shehata
,
A. M.
,
Kassem
,
O. M. K.
, and
Ghrefat
,
H.
,
2019
, “
Integrated Geological and Petrophysical Characterization of Oligocene Deep Marine Unconventional Poor to Tight Sandstone Gas Reservoir
,”
Mar. Pet. Geol.
,
109
, pp.
868
885
.
4.
Ajdukiewicz
,
J. M.
, and
Lander
,
R. H.
,
2010
, “
Sandstone Reservoir Quality Prediction: The State of the Art
,”
AAPG Bull.
,
94
(
8
), pp.
1083
1091
.
5.
Hart
,
B. S.
,
Pearson
,
R.
, and
Rawling
,
G. C.
,
2002
, “
3-D Seismic Horizon-Based Approaches to Fracture-Swarm Sweet Spot Definition in Tight-Gas Reservoirs
,”
Lead. Edge
,
21
(
1
), pp.
28
35
.
6.
Zheng
,
S.
,
Hwang
,
J.
,
Manchanda
,
R.
, and
Sharma
,
M. M.
,
2021
, “
An Integrated Model for Non-Isothermal Multi-phase Flow, Geomechanics and Fracture Propagation
,”
J. Pet. Sci. Eng.
,
196
, p.
107716
.
7.
Prise
,
G. J.
,
Stewart
,
D. R.
,
Bird
,
T. M.
,
Holland
,
B.
, and
Wilson
,
W. W.
,
1993
, “
Successful Completion Operations on Ravenspurn North Development
,”
SPE Offshore Europe
,
Aberdeen, UK
,
Sept. 07–10
, Paper No. SPE-26744-MS
8.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2010
, “
New Pore-Scale Considerations for Shale Gas in Place Calculations
,”
SPE Unconventional Gas Conference
,
Pittsburgh, PA
,
Feb. 23–25
, Paper No. SPE-131772-MS
9.
Zheng
,
S.
,
Manchanda
,
R.
, and
Sharma
,
M. M.
,
2019
, “
Development of a Fully Implicit 3-D Geomechanical Fracture Simulator
,”
J. Pet. Sci. Eng.
,
179
, pp.
758
775
.
10.
Hou
,
L.
,
Zou
,
C.
,
Yu
,
Z.
,
Luo
,
X.
,
Wu
,
S.
,
Zhao
,
Z.
,
Lin
,
S.
, et al
,
2021
, “
Quantitative Assessment of the Sweet Spot in Marine Shale Oil and Gas Based on Geology, Engineering, and Economics: A Case Study From the Eagle Ford Shale, USA
,”
Energy Strategy Rev.
,
38
, p.
100713
.
11.
Wu
,
W.
,
Zhao
,
J.
,
Wei
,
X.
,
Wang
,
Y.
,
Zhang
,
J.
,
Wu
,
H.
, and
Li
,
J.
,
2022
, “
Evaluation of Gas-Rich ‘Sweet-Spot’ and Controlling Factors of Gas–Water Distribution in Tight Sandstone Gas Provinces: An Example From the Permian He8 Member in Sulige Gas Province, Central Ordos Basin, Northern China
,”
J. Asian Earth Sci.
,
227
, p.
105098
.
12.
Qin
,
R. B.
,
Yu
,
J.
, and
Huang
,
T.
,
2019
, “
A Post-Fracturing Productivity Appraisal Technology for Tight Sandstone Gas Reservoirs Using Logging Data: Taking Linxing Block of Ordos Basin as an Example
,”
China Offshore Oil Gas
,
31
(
01
), pp.
67
76
.
13.
Han
,
W.
,
Zhao
,
X.
,
Jin
,
F.
,
Pu
,
X.
,
Chen
,
S.
,
Mu
,
L.
,
Zhang
,
W.
,
Shi
,
Z.
, and
Wang
,
H.
,
2021
, “
Sweet Spot Evaluation and Exploration Practice of Lacustrine Shale Oil of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin
,”
Pet. Explor. Dev.
,
48
(
4
), pp.
900
910
.
14.
Akbar
,
M. N. A.
, and
Nugraha
,
S. T.
,
2018
, “
K-Mean Cluster Analysis for Better Determining the Sweet Spot Intervals of the Unconventional Organic-Rich Shale: A Case Study
,”
Contemp. Trends Geosci.
,
7
(
2
), pp.
200
213
.
15.
Abbas
,
M. A.
, and
Al Lawe
,
E. M.
,
2019
, “
Clustering Analysis and Flow Zone Indicator for Electrofacies Characterization in the Upper Shale Member in Luhais Oil Field, Southern Iraq
,”
Abu Dhabi International Petroleum Exhibition & Conference, SPE
,
Abu Dhabi, UAE
,
Nov. 12
, Paper No. SPE-197906-MS.
16.
Huang
,
R.
,
Wei
,
C.
,
Wang
,
B.
,
Li
,
B.
,
Yang
,
J.
,
Wu
,
S.
,
Xiong
,
L.
, et al
,
2021
, “
A Comprehensive Machine Learning Approach for Quantitatively Analyzing Development Performance and Optimization for a Heterogeneous Carbonate Reservoir in Middle East
,”
SPE Eastern Europe Subsurface Conference, SPE
,
Kyiv, Ukraine
,
Nov. 23
, Paper No. SPE-208529-MS.
17.
Gharavi
,
A.
,
Hassan
,
M.
,
Gholinezhad
,
J.
,
Ghoochaninejad
,
H.
,
Barati
,
H.
,
Buick
,
J.
, and
Abbas
,
K. A.
,
2022
, “
Application of Machine Learning Techniques for Identifying Productive Zones in Unconventional Reservoir
,”
Int. J. Intell. Netw.
,
3
, pp.
87
101
.
18.
Ji
,
G.
,
Jia
,
A.
,
Meng
,
D.
,
Guo
,
Z.
,
Wang
,
G.
,
Cheng
,
L.
, and
Zhao
,
X.
,
2019
, “
Technical Strategies for Effective Development and Gas Recovery Enhancement of a Large Tight Gas Field: A Case Study of Sulige Gas Field, Ordos Basin, NW China
,”
Pet. Explor. Dev.
,
46
(
3
), pp.
629
641
.
19.
Rickman
,
R.
,
Mullen
,
M.
,
Petre
,
E.
,
Grieser
,
B.
, and
Kundert
,
D.
,
2008
, “
A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition, SPE
,
Denver, CO
,
Sept. 21–24
, Paper No. SPE-115258-MS.
20.
Cudjoe
,
S.
,
Vinassa
,
M.
,
Gomes
,
H. B.
,
and Barati
,
J.
, and
Gh
,
R.
,
2016
, “
A Comprehensive Approach to Sweet-Spot Mapping for Hydraulic Fracturing and CO2 Huff-n-Puff Injection in Chattanooga Shale Formation
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
1201
1218
.
21.
Jin
,
X.
,
Shah
,
S. N.
,
Roegiers
,
J.-C.
, and
Zhang
,
B.
,
2014
, “
Fracability Evaluation in Shale Reservoirs—An Integrated Petrophysics and Geomechanics Approach
,”
SPE Hydraulic Fracturing Technology Conference, SPE
,
The Woodlands, TX
,
Feb. 4–6
, Paper No. SPE-168589-MS.
22.
Whittaker
,
B. N.
,
Singh
,
R. N.
, and
Sun
,
G.
,
1992
,
Rock Fracture Mechanics. Principles, Design and Applications
,
Elsevier
,
Netherlands
.
23.
Jin
,
Y.
,
Yuan
,
J. B.
,
Chen
,
M.
,
Chen
,
K. P.
,
Lu
,
Y. H.
, and
Wang
,
H. Y.
,
2011
, “
Determination of Rock Fracture Toughness KIIC and Its Relationship With Tensile Strength
,”
Rock Mech. Rock Eng.
,
44
(
5
), pp.
621
627
.
24.
Jain
,
A. K.
,
2010
, “
Data Clustering: 50 Years Beyond K-Means
,”
Pattern Recognit. Lett.
,
31
(
8
), pp.
651
666
.
25.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2006
,
K-Means++: The Advantages of Careful Seeding
,
Stanford InfoLab
,
Stanford, CA
.
26.
Nainggolan
,
R.
,
Perangin-angin
,
R.
,
Simarmata
,
E.
, and
Tarigan
,
A. F.
,
2019
, “
Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) Optimized by Using the Elbow Method
,”
J. Phys. Conf. Ser.
,
1361
(
1
), p.
012015
.
27.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
, pp.
53
65
.
28.
Brzezińska
,
A. N.-
, and
Horyń
,
C.
,
2020
, “
Outliers in Rules—The Comparision of LOF, COF and KMEANS Algorithms
,”
Procedia Comput. Sci.
,
176
, pp.
1420
1429
.
You do not currently have access to this content.