Abstract

Sand production is a common problem that interrupts hydrocarbon production from unconsolidated formations. Different chemical and mechanical methods are used to prevent solid production either by consolidating the sand particles or installing downhole screens. This study presents a novel approach for sand consolidation using enforced calcium and magnesium precipitation. The used chemicals are ammonium hydrogen fluoride, calcium oxide, and magnesium oxide solutions. In this work, different measurements were carried out to assess the performance of the new consolidation method. Also, the impact of soaking the consolidated sand in freshwater, toluene, and HCl was examined. The rock mineralogy was determined before and after each soaking treatment using X-ray diffraction (XRD) analysis. The nuclear magnetic resonance (NMR) technique was used to evaluate the pore system at different stages. In addition, scanning electron microscope (SEM) technique was used to examine the morphology and chemistry changes after each chemical treatment. Finally, the rock strength was measured before and after the treatment using a scratch test. Results indicate that the proposed chemical method can significantly improve the sand consolidation and increase the rock strength to 34 MPa (4931 psi). Soaking the consolidated sand sample in water and toluene showed minor alterations in the rock properties. However, using HCl lead to increasing rock permeability due to mineral dissolution. The strength measurements showed that the consolidated sand can withstand the water and toluene treatment, and the rock strength was reduced by less than 10%. Overall, a new chemical treatment is presented to improve the sand consolidated utilizing enforced calcium and magnesium precipitation. The consolidated sand sample showed very reasonable rock strength which can prevent sand migration.

References

1.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
850
873
.
2.
Yan
,
C.
,
Li
,
Y.
,
Cheng
,
Y.
,
Wang
,
W.
,
Song
,
B.
,
Deng
,
F.
, and
Feng
,
Y.
,
2018
, “
Sand Production Evaluation During Gas Production From Natural Gas Hydrates
,”
J. Nat. Gas Sci. Eng.
,
57
, pp.
77
88
.
3.
Rahmati
,
H.
,
Jafarpour
,
M.
,
Azadbakht
,
S.
,
Nouri
,
A.
,
Vaziri
,
H.
,
Chan
,
D.
, and
Xiao
,
Y.
,
2013
, “
Review of Sand Production Prediction Models
,”
J. Petrol. Eng.
,
864981
, pp.
1
16
.
4.
Zhou
,
S.
, and
Sun
,
F.
,
2016
,
Sand Production Management for Unconsolidated Sandstone Reservoirs
,
John Wiley and Sons Publisher
,
Hoboken, NJ
.
5.
Yan
,
M.
,
Deng
,
J.
,
Yu
,
B.
,
Li
,
M.
,
Zhang
,
B.
,
Xiao
,
Q.
, and
Tian
,
D.
,
2020
, “
Comparative Study on Sanding Characteristics Between Weakly Consolidated Sandstones and Unconsolidated Sandstones
,”
J. Nat. Gas Sci. Eng.
,
76
, p.
103183
.
6.
Ahad
,
N. A.
,
Jami
,
M.
, and
Tyson
,
S.
,
2020
, “
A Review of Experimental Studies on Sand Screen Selection for Unconsolidated Sandstone Reservoirs
,”
J. Petrol. Expl. Prod. Technol.
,
10
(
4
), pp.
1675
1688
.
7.
Huang
,
T. T.
,
Evans
,
B. A.
,
Crews
,
J. B.
, and
Belcher
,
C. K.
,
2010,
Field Case Study on Formation Fines Control With Nanoparticles in Offshore Wells
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, pp.
1
8
.
8.
Deng
,
F.
,
Yan
,
C.
,
Jia
,
S.
,
Chen
,
S.
,
Wang
,
L.
, and
He
,
L.
,
2019
, “
Influence of Sand Production in an Unconsolidated Sandstone Reservoir in a Deepwater Gas Field
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092904
.
9.
Mahmud
,
H. B.
,
Leong
,
V. H.
, and
Lestariono
,
Y.
,
2020
, “
Sand Production: A Smart Control Framework for Risk Mitigation
,”
Petroleum
,
6
(
1
), pp.
1
13
.
10.
Dietrich
,
W. E.
,
Smith
,
J. D.
, and
Dunne
,
T.
,
1979
, “
Flow and Sediment Transport in a Sand Bedded Meander
,”
J. Geol.
,
87
(
3
), pp.
305
315
.
11.
Jolly
,
R. J.
, and
Lonergan
,
L.
,
2002
, “
Mechanisms and Controls on the Formation of Sand Intrusions
,”
J. Geol. Soc.
,
159
(
5
), pp.
605
617
.
12.
Dyer
,
K. R.
, and
Huntley
,
D. A.
,
1999
, “
The Origin, Classification and Modelling of Sand Banks and Ridges
,”
Cont. Shelf. Res.
,
19
(
10
), pp.
1285
1330
.
13.
Tiffin
,
D. L.
,
King
,
G. E.
,
Larese
,
R. E.
, and
Britt
,
L. K.
,
1998,
New Criteria for Gravel and Screen Selection for Sand Control
,”
SPE Formation Damage Control Conference
,
Lafayette, Louisiana
,
Feb. 18−19
, pp.
1
14
.
14.
Isehunwa
,
O. S.
, and
Farotade
,
A.
,
2010
, “
Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs
,”
Int. J. Eng. Sci. Technol.
,
2
(
5
), pp.
777
782
.
15.
Han
,
X.
,
Zhong
,
L.
,
Liu
,
Y.
,
Fang
,
T.
, and
Chen
,
C.
,
2020
, “
Experimental Study and Pore Network Modeling of Formation Damage Induced by Fines Migration in Unconsolidated Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
113006
.
16.
Mahmoud
,
M.
,
2017
, “
New Formulation for Sandstone Acidizing That Eliminates Sand Production Problems in Oil and Gas Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042902
.
17.
Madadizadeh
,
A.
,
Sadeghein
,
A.
, and
Riahi
,
S.
,
2022
, “
A Comparison of Different Nanoparticles’ Effect on Fine Migration by Low Salinity Water Injection for Oil Recovery: Introducing an Optimum Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013005
.
18.
Li
,
Y.
,
Liu
,
L.
,
Liu
,
C.
,
Sun
,
J.
,
Ye
,
Y.
, and
Chen
,
Q.
,
2016
, “
Sanding Prediction and Sand-Control Technology in Hydrate Exploitation: A Review and Discussion
,”
Mar. Geo. Fron.
,
32
(
7
), pp.
36
43
.
19.
Matanovic
,
D.
,
Cikes
,
M.
, and
Moslavac
,
B.
,
2012
,
Sand Control in Well Construction and Operation
,
Springer Science & Business Media Publisher
,
Berlin/Heidelberg, Germany
.
20.
Alakbari
,
F. S.
,
Mohyaldinn
,
M. E.
,
Muhsan
,
A. S.
,
Hasan
,
N.
, and
Ganat
,
T.
,
2020
, “
Chemical Sand Consolidation: From Polymers to Nanoparticles
,”
Polymers
,
12
(
5
), p.
1069
.
21.
Tabar
,
M. A.
,
Bagherzadeh
,
H.
,
Shahrabadi
,
A.
, and
Dahim
,
S.
,
2021
, “
A Comprehensive Research in Chemical Consolidator/Stabilizer Agents on Sand Production Control
,”
J. Petrol. Expl. Prod. Technol.
,
11
(
12
), pp.
4305
4324
.
22.
Mishra
,
S.
, and
Ojha
,
K.
,
2015
, “
Chemical Sand Consolidation: An Overview
,”
J. Pet. Eng. Technol
,
5
, pp.
21
34
.
23.
Alarifi
,
S. A.
,
Mustafa
,
A.
,
Omarov
,
K.
,
Baig
,
A. R.
,
Tariq
,
Z.
, and
Mahmoud
,
M.
,
2022
, “
A Review of Enzyme-Induced Calcium Carbonate Precipitation Applicability in the Oil and Gas Industry
,”
Front. Bioengin. Biotechnol.
,
10
, p.
900881
.
24.
Osman
,
E. A.
,
Aggour
,
M. A.
, and
Abu-Khamsin
,
S. A.
,
2000
, “
In-Situ Sand Consolidation by Low-Temperature Oxidation
,”
SPE Prod. Facil.
,
15
(
01
), pp.
42
49
.
25.
Al-Thawadi
,
S.
,
Cord-Ruwisch
,
R.
, and
Bououdina
,
M.
,
2012
, “
Consolidation of Sand Particles by Nanoparticles of Calcite After Concentrating Ureolytic Bacteria in Situ
,”
Int. J. Green Nanotechnol.
,
4
(
1
), pp.
28
36
.
26.
Talaghat
,
M. R.
,
Esmaeilzadeh
,
F.
, and
Mowla
,
D.
,
2009
, “
Sand Production Control by Chemical Consolidation
,”
J. Petrol. Sci. Eng.
,
67
(
1–2
), pp.
34
40
.
27.
Dees
,
J. M.
,
1992
, “
Sand Control in Wells With Gas Generator and Resin
,”
SPE Annual Technical Conference and Exhibition
,
Washington, DC
,
Oct. 4–7
, pp.
1
16
.
28.
Tao
,
Q.
,
Ghassemi
,
A.
, and
Birchwood
,
R.
,
2008
, “
Poroelastoplastic Analysis of Factors Controlling Sand Production From a Hemispherical Cavity
,”
The 42nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium
,
San Francisco, CA
,
June 29–July 2
, pp.
1
7
.
29.
Ogolo
,
N.
,
Olafuyi
,
O.
, and
Onyekonwu
,
M.
,
2012
, “
Effect of Nanoparticles on Migrating Fines in Formations
,”
SPE International Oilfield Nanotechnology Conference Held in Noordwijk
,
The Netherlands
,
June 12–14
, pp.
1
12
.
30.
Al-Awad
,
M. N.
,
2001
, “
The Mechanism of Sand Production Caused by Pore Pressure Fluctuations
,”
Oil Gas Sci. Technol.
,
56
(
4
), pp.
339
345
.
31.
Ripa
,
G.
,
Ligrone
,
A.
,
Zamparini
,
A.
,
Sportelli
,
M.
,
Mathis
,
S. P.
, and
Conte
,
A.
,
2005
, “
Cost-Effective Sand-Control Operations Play Key Role in Revitalizing a Mature Gas Field
,”
SPE Dril. Comp.
,
20
(
3
), pp.
209
217
.
32.
Aggour
,
M. A.
,
Abu-Khamsin
,
S. A.
, and
Osman
,
E. S. A.
,
2004
, “
Investigation of In-Situ Low-Temperature Oxidation As a Viable Sand Consolidation Technique
,”
J. Petrol. Sci. Eng.
,
42
(
2–4
), pp.
107
120
.
33.
Redford, D.A., Texaco Exploration Canada Ltd
,
1976
, “
Sand Control Method Employing Low Temperature Oxidation
,” U.S. Patent 3,974,877.
34.
Dehghani
,
A.
,
Rahmanifard
,
H.
, and
Mowla
,
D.
,
2013
, “
Experimental Investigation of Sand Consolidation Techniques: Resin Injection and In-Situ Combustion
,”
Int. J. Oil Gas Coal Technol.
,
6
(
6
), pp.
689
704
.
35.
Gowida
,
A. H.
,
Abu-Khamsin
,
S. A.
,
Mahmoud
,
M. A.
,
Aljawad
,
M. S.
, and
Alafnan
,
S. F.
,
2022
, “
Accelerated Low-Temperature Oxidation for Sand Consolidation and Production Control
,”
J. Petrol. Sci. Eng.
,
214
, p.
110567
.
36.
Zheng
,
L.
,
Wang
,
H.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Li
,
Y.
,
2022
, “
Experimental Study on Water-Plugging Performance of Silicon Dioxide/Polystyrene Hydrophobic Insoluble Microsphere Particle Flooded by High-Water-Cut Oil–Water Mixture
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
123012
.
37.
Marfo
,
S. A.
,
Appah
,
D.
,
Joel
,
O. F.
, and
Ofori-Sarpong
,
G.
,
2015
, “
Sand Consolidation Operations, Challenges and Remedy
,”
Nigeria Annual International Conference and Exhibition Held in Lagos
,
Nigeria
,
Aug. 4–6
, pp.
1
12
.
You do not currently have access to this content.