Abstract

This article conducted a numerical study of composite percussive drilling with consideration of heat transfer between drilling fluid and bottom-hole rock in geothermal drilling, and analyzed influences of temperature, impact parameters, and heat transfer on rock fragmentation characteristics and energy transfer patterns. In this article, a model for a percussive drilling system based on the coupling of composite percussion and heat transfer was built. The rock fragmentation mechanism and energy transfer efficiency under the coupling of composite percussion and thermal exchange were studied. The main study results are as follows. As the temperature enhances, the total energy transfer efficiency declines, and the tensile damage area shrinks, while the outward extension of tensile cracks enhances. The total energy transfer efficiency enhances with the increase of the heat flux. The thermal load of the rock caused by heat transfer is essentially tensile stress. As the heat flux enhances, the tensile damage areas of the rock gradually expand and interconnect. Under the couplings of composite percussion and heat transfer, the heat transfer can intensify the rock breakage by tensile stress and enhance the energy transfer efficiency, and large deformation of the rock generated by composite percussion can promote the heat transfer process of drilling fluid and high-temperature rock, which in turn enhances the rock thermal damage. This study reveals coupling mechanisms of composite percussion and heat transfer and provides parameter optimization basis for composite percussive drilling in geothermal well.

References

1.
Song
,
H.
,
Shi
,
H.
,
Chen
,
Z.
,
Li
,
G.
,
Ji
,
R.
, and
Chen
,
H.
,
2021
, “
Numerical Study on Impact Energy Transfer and Rock Damage Mechanism in Percussive Drilling Based on High Temperature Hard Rocks
,”
Geothermics
,
96
(
11
), p.
102215
.
2.
Shi
,
Y.
,
Song
,
X.
,
Li
,
G.
,
Li
,
R.
,
Zhang
,
Y.
,
Wang
,
G.
,
Zheng
,
R.
, and
Lyu
,
Z.
,
2018
, “
Numerical Investigation on Heat Extraction Performance of a Downhole Heat Exchanger Geothermal System
,”
Appl. Therm. Eng.
,
134
(
4
), pp.
513
526
.
3.
Wang
,
G.
,
Song
,
X.
,
Shi
,
Y.
,
Sun
,
B.
,
Zheng
,
R.
,
Li
,
J.
,
Pei
,
Z.
, and
Song
,
H.
,
2019
, “
Numerical Investigation on Heat Extraction Performance of an Open Loop Geothermal System in a Single Well
,”
Geothermics
,
80
(
7
), pp.
170
184
.
4.
Chen
,
S.
,
Ding
,
B.
,
Gong
,
L.
,
Huang
,
Z.
,
Yu
,
B.
, and
Sun
,
S.
,
2019
, “
Comparison of Multi-Field Coupling Numerical Simulation in Hot Dry Rock Thermal Exploitation of Enhanced Geothermal Systems
,”
Adv. Geo-Energy Res.
,
3
(
4
), pp.
396
409
.
5.
Chen
,
J.
, and
Jiang
,
F.
,
2015
, “
Designing Multi-Well Layout for Enhanced Geothermal System to Better Exploit Hot Dry Rock Geothermal Energy
,”
Renew. Energy
,
74
(
2
), pp.
37
48
.
6.
Yang
,
C.
, and
Liu
,
J.
,
2021
, “
Petroleum Rock Mechanics: An Area Worthy of Focus in Geo-Energy Research
,”
Adv. Geo-Energy Res.
,
5
(
4
), pp.
351
352
.
7.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part I—Theory of Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
311
333
.
8.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part II—Force-Penetration and Specific Energy Determinations
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
335
356
.
9.
Li
,
Y.
,
Peng
,
J.
,
Bo
,
K.
,
Huang
,
C.
,
Zhang
,
Y.
, and
Zhang
,
P.
,
2020
, “
Analysis on the Mechanical Properties of Granite Rock Near the Wellbore After Percussive Drilling and AWJ Perforation
,”
J. Pet. Sci. Eng.
,
184
(
1
), p.
106489
.
10.
Pavlovskaia
,
E.
,
Hendry
,
D. C.
, and
Wiercigroch
,
M.
,
2015
, “
Modelling of High Frequency Vibro-Impact Drilling
,”
Int. J. Mech. Sci.
,
91
(
2
), pp.
110
119
.
11.
Cao
,
Q.
,
Shi
,
H.
,
Xu
,
W.
,
Xiong
,
C.
,
Yang
,
Z.
, and
Ji
,
R.
,
2022
, “
Theoretical and Experimental Studies of Impact Energy and Rock-Drilling Efficiency in Vibro-Impact Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023201
.
12.
Shi
,
H.
,
Ji
,
Z.
,
Jiang
,
J.
, and
Li
,
B.
,
2022
, “
Numerical Study on Fragmentation Characteristics of Granite Under a Single Polycrystalline Diamond Compact Cutter in Rotary-Percussive Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093201
.
13.
Song
,
H.
,
Shi
,
H.
,
Ji
,
Z.
,
Wu
,
X.
,
Li
,
G.
,
Zhao
,
H.
,
Wang
,
G.
,
Liu
,
Y.
, and
Hou
,
X.
,
2019
, “
The Percussive Process and Energy Transfer Efficiency of Percussive Drilling With Consideration of Rock Damage
,”
Int. J. Rock Mech. Min. Sci.
,
119
(
7
), pp.
1
12
.
14.
Song
,
H.
,
Shi
,
H.
,
Li
,
G.
,
Ji
,
Z.
, and
Li
,
X.
,
2021
, “
Three-Dimensional Numerical Simulation of Energy Transfer Efficiency and Rock Damage in Percussive Drilling With Multiple-Button Bit
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
024501
.
15.
Song
,
H.
,
Shi
,
H.
,
Li
,
G.
,
Chen
,
Z.
, and
Li
,
X.
,
2020
, “
Numerical Simulation of the Energy Transfer Efficiency and Rock Damage in Axial-Torsional Coupled Percussive Drilling
,”
J. Pet. Sci. Eng.
,
196
(
1
), p.
107675
.
16.
Saksala
,
T.
,
Gomon
,
D.
,
Hokka
,
M.
, and
Kuokkala
,
V. T.
,
2014
, “
Numerical and Experimental Study of Percussive Drilling With a Triple-Button Bit on Kuru Granite
,”
Int. J. Impact Eng.
,
72
(
4
), pp.
56
66
.
17.
Saksala
,
T.
,
2016
, “
Numerical Study of the Influence of Hydrostatic and Confining Pressure on Percussive Drilling of Hard Rock
,”
Comput. Geotech.
,
76
(
6
), pp.
120
128
.
18.
Saksala
,
T.
,
2020
, “
Thermal Shock Assisted Percussive Drilling: A Numerical Study on the Single-Bit Axisymmetric Case
,”
Int. J. Rock Mech. Min. Sci.
,
132
(
8
), p.
104365
.
19.
Zhang
,
X.
,
Zhang
,
S.
,
Luo
,
Y.
, and
Wu
,
D.
,
2019
, “
Experimental Study and Analysis on a Fluidic Hammer—An Innovative Rotary-Percussion Drilling Tool
,”
J. Pet. Sci. Eng.
,
173
(
2
), pp.
362
370
.
20.
Song
,
X.
,
Aamo
,
O. M.
,
Kane
,
P.-A.
, and
Detournay
,
E.
,
2020
, “
Influence of Weight-on-Bit on Percussive Drilling Performance
,”
Rock Mech. Rock Eng.
,
54
(
7
), pp.
3491
3505
.
21.
Tian
,
J.
,
Fan
,
C.
,
Zhang
,
T.
, and
Zhou
,
Y.
,
2019
, “
Rock Breaking Mechanism in Percussive Drilling With the Effect of High-Frequency Torsional Vibration
,”
Energy Sources A: Recovery, Util. Environ. Eff.
,
44
(
1
), pp.
2520
2534
.
22.
Rouabhi
,
A.
, and
Gerbaud
,
L.
,
2022
, “
Percussive Drilling: Experimental and Numerical Investigations
,”
Rock Mech. Rock Eng.
,
55
(
3
), pp.
1
16
.
23.
Oparin
,
V. N.
,
Karpov
,
V. N.
,
Timonin
,
V. V.
, and
Konurin
,
A. I.
,
2022
, “
Evaluation of the Energy Efficiency of Rotary Percussive Drilling Using Dimensionless Energy Index
,”
J. Rock Mech. Geotech. Eng.
,
14
(
5
), pp.
1486
1500
.
24.
Ji
,
Z.
,
Shi
,
H.
,
Li
,
G.
, and
Song
,
H.
,
2020
, “
Improved Drifting Oscillator Model for Dynamical Bit-Rock Interaction in Percussive Drilling Under High-Temperature Condition
,”
J. Pet. Sci. Eng.
,
186
(
3
), p.
106772
.
25.
Mu
,
Z.
,
Li
,
G.
,
Huang
,
Z.
,
Li
,
J.
, and
Song
,
H.
,
2020
, “
Research and Field Application of the Axial-Torsional Coupled Percussion Drilling Technology
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032901
.
26.
Song
,
H.
,
Shi
,
H.
,
Yuan
,
G.
,
Ji
,
Z.
,
Xia
,
Y.
,
Li
,
J.
, and
Liu
,
T.
,
2022
, “
Experimental study of the energy transfer efficiency and rock fragmentation characteristics in percussive drilling
,”
Geothermics
,
105
(
11
), p.
102497
.
27.
Wu
,
X.
,
Huang
,
Z.
,
Zhang
,
S.
,
Cheng
,
Z.
,
Li
,
R.
,
Song
,
H.
,
Wen
,
H.
, and
Huang
,
P.
,
2019
, “
Damage Analysis of High-Temperature Rocks Subjected to LN2 Thermal Shock
,”
Rock Mech. Rock Eng.
,
52
(
8
), pp.
2585
2603
.
You do not currently have access to this content.