Abstract

Octane sensitivity (OS), defined as the research octane number (RON) minus the motor octane number (MON) of a fuel, has gained interest among researchers due to its effect on knocking conditions in internal combustion engines. Compounds with a high OS enable higher efficiencies, especially within advanced compression ignition engines. RON/MON must be experimentally tested to determine OS, requiring time, funding, and specialized equipment. Thus, predictive models trained with existing experimental data and molecular descriptors (via quantitative structure-property relationships (QSPRs)) would allow for the preemptive screening of compounds prior to performing these experiments. The present work proposes two methods for predicting the OS of a given compound: using artificial neural networks (ANNs) trained with QSPR descriptors to predict RON and MON individually to compute OS (derived octane sensitivity (dOS)), and using ANNs trained with QSPR descriptors to directly predict OS. Twenty-five ANNs were trained for both RON and MON and their test sets achieved an overall 6.4% and 5.2% error, respectively. Twenty-five additional ANNs were trained for both dOS and OS; dOS calculations were found to have 15.3% error while predicting OS directly resulted in 9.9% error. A chemical analysis of the top QSPR descriptors for RON/MON and OS is conducted, highlighting desirable structural features for high-performing molecules and offering insight into the inner mathematical workings of ANNs; such chemical interpretations study the interconnections between structural features, descriptors, and fuel performance showing that connectivity, structural diversity, and atomic hybridization consistently drive fuel performance.

References

1.
Demirbas
,
A.
,
Balubaid
,
M. A.
,
Basahel
,
A. M.
,
Ahmad
,
W.
, and
Sheikh
,
M. H.
,
2015
, “
Octane Rating of Gasoline and Octane Booster Additives
,”
Pet. Sci. Technol.
,
33
(
11
), pp.
1190
1197
.
2.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032305
.
3.
ASTM D2699 Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel. ASTM International, 2021.
4.
ASTM D2700 Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel. ASTM International, 2021.
5.
Mendes
,
G.
,
Aleme
,
H. G.
, and
Barbeira
,
P. J. S.
,
2012
, “
Determination of Octane Numbers in Gasoline by Distillation Curves and Partial Least Squares Regression
,”
Fuel
,
97
, pp.
131
136
.
6.
Yates
,
A.
,
Swarts
,
A.
, and
Viljoen
,
C.
,
2005
, Correlating Auto-Ignition Delays and Knock-Limited Spark-Advance Data for Different Types of Fuel, SAW Technical Paper 2005-01-2083.
7.
Mehl
,
M.
,
Faravelli
,
T.
,
Giavazzi
,
F.
,
Ranzi
,
E.
,
Scorletti
,
P.
, and
Tardani
,
A.
,
2006
, “
Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity
,”
Energy Fuels
,
20
(
6
), pp.
2391
2398
.
8.
Szybist
,
J. P.
, and
Splitter
,
D. A.
,
2017
, “
Pressure and Temperature Effects on Fuels With Varying Octane Sensitivity at High Load in SI Engines
,”
Combust. Flame
,
177
, pp.
49
66
.
9.
Daniel
,
R.
,
Tian
,
G.
,
Xu
,
H.
, and
Shuai
,
S.
,
2012
, “
Ignition Timing Sensitivities of Oxygenated Biofuels Compared to Gasoline in a Direct-Injection SI Engine
,”
Fuel
,
99
, pp.
72
82
.
10.
Zhen
,
X.
,
Wang
,
Y.
, and
Liu
,
D.
,
2020
, “
Bio-Butanol as a New Generation of Clean Alternative Fuel for SI (Spark Ignition) and CI (Compression Ignition) Engines
,”
Renewable Energy
,
147
(
1
), pp.
2494
2521
.
11.
Kostal
,
J.
,
Voutchkova-Kostal
,
A.
,
Anastas
,
P. T.
, and
Zimmerman
,
J. B.
,
2014
, “
Identifying and Designing Chemicals With Minimal Acute Aquatic Toxicity
,”
PNAS
,
112
(
20
), pp.
6289
6294
.
12.
Hall
,
L. H.
,
Mohney
,
B.
, and
Kier
,
L. B.
,
1991
, “
The Electrotopological State: An Atom Index for QSAR
,”
Quant. Struct. Activ. Relation.
,
10
(
1
), pp.
43
51
.
13.
Gutman
,
I.
,
Furtula
,
B.
, and
Katanić
,
V.
,
2018
, “
Randić Index and Information
,”
AKCE Int. J. Graphs Comb.
,
15
(
3
), pp.
307
312
.
14.
Du
,
Z.
,
Jahanbai
,
A.
, and
Sheikholeslami
,
S. M.
,
2021
, “
Relationships Between Randić Index and Other Topological Indices
,”
Commun. Comb. Optim.
,
6
(
1
), pp.
137
154
.
15.
Kier
,
L. B.
, and
Hall
,
L. H.
,
1990
, “
An Electrotopological-Index for Atoms in Molecules
,”
Pharm. Res.
, pp.
801
807
.
16.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.
17.
Saldana
,
D. A.
,
Starck
,
L.
,
Mougin
,
P.
,
Rousseau
,
B.
,
Pidol
,
L.
,
Jeuland
,
N.
, and
Creton
,
B.
,
2011
, “
Flash Point and Cetane Number Predictions for Fuel Compounds Using Quantitative Structure Property Relationship (QSPR) Methods
,”
Energy Fuels
,
25
(
9
), pp.
3900
3908
.
18.
Smolenskii
,
E. A.
,
Bavykin
,
V. M.
,
Ryzhov
,
A. N.
,
Slovokhotova
,
O. L.
,
Chuvaeva
,
I. V.
, and
Lapidus
,
A. L.
,
2008
, “
Cetane Number of Hydrocarbons: Calculations Using Optimal Topological Indices
,”
Russ. Chem. Bull.
,
57
(
3
), pp.
461
467
.
19.
Zheng
,
L.
,
Singh
,
P.
,
Cronly
,
J.
,
Ubogu
,
E. A.
,
Ahmed
,
I.
,
Ling
,
C.
,
Zhang
,
Y.
, and
Khandelwal
,
B.
,
2021
, “
Impact of Aromatic Structures and Content in Formulated Fuel for Jet Engine Applications on Particulate Matter Emissions
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122301
.
20.
Lo
,
Y.
,
Rensi
,
S. E.
,
Torng
,
W.
, and
Altman
,
R. B.
,
2018
, “
Machine Learning in Chemoinformatics and Drug Discovery
,”
Drug Discov. Today
,
23
(
8
), pp.
1538
1546
.
21.
Zhang
,
Y.
,
Voice
,
A.
,
Pei
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2018
, “
A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102202
.
22.
Kalvakala
,
K.
,
Pal
,
P.
,
Wu
,
Y.
,
Kukkadapu
,
G.
,
Kolodziej
,
C.
,
Pulpeiro Gonzalez
,
J.
,
Umer Waqas
,
M.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Analysis of Fuel Effects on Advanced Compression Ignition Using a Cooperative Fuel Research Engine Computational Fluid Dynamics Model
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102304
.
23.
Xu
,
C.
,
Pal
,
P.
,
Ren
,
X.
,
Sjöberg
,
M.
,
Van Dam
,
N.
,
Wu
,
Y.
,
Lu
,
T.
,
McNenly
,
M.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042306
.
24.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
Chee See
,
Y.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
25.
Li
,
R.
,
Herreros
,
J. M.
,
Tsolakis
,
A.
, and
Yang
,
W.
,
2020
, “
Machine Learning Regression Based Group Contribution Method for Cetane and Octane Numbers Prediction of Pure Fuel Compounds and Mixtures
,”
Fuel
,
280
, p.
118589
.
26.
Kessler
,
T.
,
St John
,
P. C.
,
Zhu
,
J.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
, and
Mack
,
J. H.
,
2021
, “
A Comparison of Computational Models for Predicting Yield Sooting Index
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1385
1393
.
27.
Das
,
D. D.
,
St.John
,
P. C.
,
McEnally
,
C. S.
,
Kim
,
S.
, and
Pfefferle
,
L. D.
,
2018
, “
Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale
,”
Combust. Flame
,
190
, pp.
349
364
.
28.
Kessler
,
T.
,
Sacia
,
E. R.
,
Bell
,
A. T.
, and
Mack
,
J. H.
,
2017
, “
Artificial Neural Network Based Predictions of Cetane Number for Furanic Biofuel Additives
,”
Fuel
,
206
, pp.
171
179
.
29.
van Leeuwen
,
J. A.
,
Jonker
,
R. J.
, and
Gill
,
R.
,
1994
, “
Octane Number Prediction Based on Gas Chromatographic Analysis With Non-Linear Regression Techniques
,”
Chemom. Intell. Lab. Syst.
,
25
(
2
), pp.
325
340
.
30.
Pasadakis
,
N.
,
Gaganis
,
V.
, and
Foteinopoulos
,
G.
,
2006
, “
Octane Number Prediction for Gasoline Blends
,”
Fuel Process. Technol.
,
87
(
6
), pp.
505
509
.
31.
Daly
,
S. R.
,
Niemeyer
,
K. E.
,
Cannella
,
W. J.
, and
Hagen
,
C. L.
,
2016
, “
Predicting Fuel Research Octane Number Using Fourier Transform Infrared Absorption Spectra of Neat Hydrocarbons
,”
Fuel
,
183
, pp.
359
365
.
32.
Baluja
,
S.
, and
Pomerleau
,
D.
,
1994
, “
Non-Intrusive Gaze Tracking Using Artificial Neural Networks
,”
AAAI '93 Fall Symposium on Machine Learning in Computer Vision: What, Why and How?
,
Stanford, CA
, pp.
753
760
.
33.
Chen
,
Z.
, and
Yang
,
D. T.
,
2021
, “
Predicting Viscosities of Heavy Oils and Solvent–Heavy Oil Mixtures Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
113001
.
34.
ASTM International,
1958
,
Knocking Characteristics of Pure Hydrocarbons
,
ASTM International
,
West Conshohocken, PA
.
35.
Ghosh
,
P.
,
Hickey
,
K. J.
, and
Jaffe
,
S. B.
,
2006
, “
Development of a Detailed Gasoline Composition-Based Octane Model
,”
Ind. Eng. Chem. Res.
,
45
(
1
), pp.
337
345
.
36.
Christensen
,
E.
,
Yanowitz
,
J.
,
Ratcliff
,
M.
, and
McCormick
,
R. L.
,
2011
, “
Renewable Oxygenate Blending Effects on Gasoline Properties
,”
Energy Fuels
,
25
(
10
), pp.
4723
4733
.
37.
Scherzer
,
J.
,
1989
, “
Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects
,”
Catal. Rev.: Sci. Eng.
,
31
(
3
), pp.
215
354
.
38.
McCormick
,
R. L.
,
Fioroni
,
G.
,
Fouts
,
L.
,
Christensen
,
E.
,
Yanowitz
,
J.
,
Polikarpov
,
E.
,
Albrecht
,
K.
,
Gaspar
,
D. J.
,
Gladden
,
J.
, and
George
,
A.
,
2017
, “
Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines
,”
SAE Int. J. Fuels Lubr.
,
10
(
2
), pp.
442
460
.
39.
Co-Optimization of Fuels & Engines: Fuel Properties Database. https://www.nrel.gov/transportation/fuels-properties-database/
40.
vom Lehn
,
F.
,
Cai
,
L.
,
Tripathi
,
R.
,
Broda
,
R.
, and
Pitsch
,
H.
,
2021
, “
A Property Database of Fuel Compounds With Emphasis on Spark-Ignition Engine Applications
,”
Appl. Energy Combust. Sci.
,
5
.
41.
Alvascience, alvaDesc (Software for Calculating Molecular Descriptors) version 1.0.22,
2020
, https://www.alvascience.com.
42.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
43.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
44.
Kessler
,
T.
, and
Mack
,
J. H.
,
2017
, “
ECNet: Large Scale Machine Learning Projects for Fuel Property Prediction
,”
J. Open Source Softw.
,
2
(
17
), p.
401
.
45.
Dubey
,
S. R.
,
Singh
,
S. K.
, and
Chaudhuri
,
B. B.
,
2022
, “
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
,”
Neurocomputing
,
503
(
C
).
46.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference for Learning Representation
,
San Diego, CA
,
May 9
.
47.
Lehn
,
F. v.
,
Brosius
,
B.
,
Broda
,
R.
,
Cai
,
L.
, and
Pitsch
,
H.
,
2020
, “
Using Machine Learning With Target-Specific Feature Sets for Structure- Property Relationship Modeling of Octane Numbers and Octane Sensitivity
,”
Fuel
,
281
(
118772
).
48.
Klein
,
S. A.
, and
Tyler
,
C. W.
,
1986
, “
Phase Discrimination of Compound Gratings: Generalized Autocorrelation Analysis
,”
J. Opt. Soc. Am. A
,
3
(
6
), pp.
868
879
.
49.
Chessel
,
D.
,
1981
, “The Spatial Autocorrelation Matrix,”
Vegetation Dynamicsin Grasslands, Healthlands and Mediterranean Ligneous Formations
,
Springer
,
Dordrecht
, pp.
177
180
.
50.
Coote
,
M. L.
,
Lin
,
C. Y.
,
Beckwith
,
A. L. J.
, and
Zavitsas
,
A. A.
,
2010
, “
A Comparison of Methods for Measuring Relative Radical Stabilities of Carbon-Centered Radicals
,”
Phys. Chem. Chem. Phys
,
12
(
33
), pp.
9597
9610
.
51.
Yang
,
Y.
,
Boehman
,
A. L.
, and
Simmie
,
J. M.
,
2010
, “
Uniqueness in the Low Temperature Oxidation of Cycloalkanes
,”
Combust. Flame
,
157
(
12
), pp.
2357
2368
.
52.
Randić
,
M.
,
1975
, “
Characterization of Molecular Branching
,”
J. Am. Chem. Soc.
,
97
(
23
), p.
66096615
.
53.
Estrada
,
E.
, and
Montero
,
L. A.
,
1993
, “
Bond Order Weighted Graphs in Molecules as Structure-Property Indices
,”
Mol. Eng.
,
2
(
4
), pp.
363
373
.
54.
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
, and
Sjöberg
,
M.
,
2017
, “
Chemical Kinetics of Octane Sensitivity in a Spark Ignition Engine
,”
Combust. Flame
,
175
, pp.
2
15
.
55.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Mehl
,
M.
,
Glaude
,
P. A.
,
Herbinet
,
O.
,
Bax
,
S.
,
Battin-Leclerc
,
F.
, et al
,
2015
, “
Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics
,”
J. Phys. Chem. A
,
119
(
28
), pp.
7462
7480
.
56.
Xiao
,
F.
,
Sun
,
X.
, and
Li
,
Z.
,
2020
, “
Theoretical Study of Radical–Molecule Reactions With Negative Activation Energies in Combustion: Hydroxyl Radical Addition to Alkenes
,”
ACS Omega
,
5
(
22
), pp.
12777
12788
.
57.
Gaspar
,
D.
,
2019
, Top Ten Blendstocks for Turbocharged Gasoline Engines: Bio-blendstocks With Potential to Deliver for Highest Engine Efficiency. PNNL-28713, Pacific Northwest National Laboratory.
You do not currently have access to this content.