Abstract

The performance of thermoelectric generators (TEGs) can be improved either by the adoption of multi-stage or tapered leg configuration. So far, a hybrid device that simultaneously uses both multi-staging and tapered leg geometry to improve its performance has not been conceived. Thus, we present a thermodynamic modeling and optimization of a two-stage thermoelectric generator (TTEG) with tapered leg geometries using ansys 2020 r2 software. The optimized parameters include the leg height, area, concentrated solar radiation, and external load resistance. First, the X-leg TEG only improves the performance of the trapezoidal leg TEG below a leg height of 3 mm. Beyond 3 mm, the performance of both TEGs become very similar. Long thermoelectric legs provide higher efficiencies, while short legs generate maximum power densities. To obtain maximum efficiencies, the initial leg height of the thermoelectric legs, 1.62 mm, is increased by 517.28%, while the initial leg area, 1.96 mm2, is decreased by 64.29%. Also, the proposed TTEG with tapered legs (trapezoidal and X-legs) improves the exergetic efficiency of the base case, single-stage rectangular leg TEG, by 16.7%. Furthermore, the use of tapered leg TEGs, in single and multi-stage arrangements, reduces the exergy conversion index of conventional rectangular leg TEGs by 1.89% and 0.98%, respectively. Finally, the use of tapered legs and multi-stage configurations increases the thermodynamic irreversibilities of conventional rectangular leg TEGs, thus reducing their thermodynamic stability.

References

1.
Zou
,
C.
,
Zhao
,
Q.
,
Zhang
,
G.
, and
Xiong
,
B.
,
2016
, “
Energy Revolution: From a Fossil Energy Era to a New Energy Era
,”
Nat. Gas Ind. B
,
3
(
1
), pp.
1
11
.
2.
Khan
,
M. Q.
,
Malarmannan
,
S.
, and
Manikandaraja
,
G.
,
2018
, “
Power Generation From Waste Heat of Vehicle Exhaust Using Thermo Electric Generator: A Review
,”
IOP Conference Series: Materials Science and Engineering
,
Kattankulathur, India
,
March
, pp.
1
9
.
3.
Kotcher
,
J.
,
Maibach
,
E.
, and
Choi
,
W. T.
,
2019
, “
Fossil Fuels Are Harming Our Brains: Identifying Key Messages About the Health Effects of Air Pollution From Fossil Fuels
,”
BMC Public Health
,
19
(
1
), pp.
1
12
.
4.
Moriarty
,
P.
, and
Honnery
,
D.
,
2016
, “
Can Renewable Energy Power the Future?
,”
Energy Policy
,
93
, pp.
3
7
.
5.
Shafiee
,
S.
, and
Topal
,
E.
,
2009
, “
When Will Fossil Fuel Reserves Be Diminished?
,”
Energy Policy
,
37
(
1
), pp.
181
189
.
6.
Jaziri
,
N.
,
Boughamoura
,
A.
,
Müller
,
J.
,
Mezghani
,
B.
,
Tounsi
,
F.
, and
Ismail
,
M.
,
2019
, “
A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications
,”
Energy Rep.
,
24
.
7.
Champier
,
D.
,
2017
, “
Thermoelectric Generators: A Review of Applications
,”
Energy Convers. Manage.
,
140
, pp.
167
181
.
8.
Lee
,
H.
,
2017
,
Thermoelectrics
, 1st ed.,
John Wiley & Sons Ltd
,
West Sussex
.
9.
Thimont
,
Y.
, and
LeBlanc
,
S.
,
2019
, “
The Impact of Thermoelectric Leg Geometries on Thermal Resistance and Power Output
,”
J. Appl. Phys.
,
126
(
9
), p.
095101
.
10.
Ali
,
H.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2015
, “
Exergy Analysis of a Thermoelectric Power Generator: Influence of Bi-Tapered Pin Geometry on Device Characteristics
,”
Int. J. Exergy
,
16
(
1
), pp.
53
71
.
11.
Liu
,
H.
,
Wang
,
S.-L.
,
Yang
,
Y.
,
Chen
,
W.
, and
Wang
,
X.
,
2020
, “
Theoretical Analysis of Performance of Variable Cross-Section Thermoelectric Generators: Effects of Shape Factor and Thermal Boundary Conditions
,”
Energy
,
201
, p.
117660
.
12.
Shittu
,
S.
,
Li
,
G.
,
Tang
,
X.
,
Zhao
,
X.
,
Ma
,
X.
, and
Badiei
,
A.
,
2020
, “
Analysis of Thermoelectric Geometry in a Concentrated Photovoltaic-Thermoelectric Under Varying Weather Conditions
,”
Energy
,
202
, pp.
1
13
.
13.
Lamba
,
R.
, and
Kaushik
,
S. C.
,
2017
, “
Thermodynamic Analysis of Thermoelectric Generator Including Influence of Thomson Effect and Leg Geometry Configuration
,”
Energy Convers. Manage.
,
144
, pp.
388
398
.
14.
Ferreira-Teixeira
,
S.
, and
Pereira
,
A. M.
,
2018
, “
Geometrical Optimization of a Thermoelectric Device: Numerical Simulations
,”
Energy Convers. Manage.
,
169
, pp.
217
227
.
15.
Ibeagwu
,
O. I.
,
2019
, “
Modelling and Comprehensive Analysis of TEGs With Diverse Variable Leg Geometry
,”
Energy
,
180
, pp.
90
106
.
16.
Wang
,
R.
,
Meng
,
Z.
,
Luo
,
D.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
A Comprehensive Study on X-Type Thermoelectric Generator Modules
,”
J. Electron. Mater.
,
49
(
7
), pp.
4343
4354
.
17.
Niu
,
Z.
,
Yu
,
S.
,
Diao
,
H.
,
Li
,
Q.
,
Jiao
,
K.
,
Du
,
Q.
,
Tian
,
H.
, and
Shu
,
G.
,
2015
, “
Elucidating Modeling Aspects of Thermoelectric Generator
,”
Int. J. Heat Mass Transfer
,
85
, pp.
12
32
.
18.
Fabián-mijangos
,
A.
,
Min
,
G.
, and
Alvarez-quintana
,
J.
,
2017
, “
Enhanced Performance Thermoelectric Module Having Asymmetrical Legs
,”
Energy Convers. Manage.
,
148
, pp.
1372
1381
.
19.
Maduabuchi
,
C.
,
Lamba
,
R.
,
Njoku
,
H.
,
Eke
,
M.
, and
Mgbemene
,
C.
,
2021
, “
Effects of Leg Geometry and Multistaging of Thermoelectric Modules on the Performance of a Photovoltaic-Thermoelectric System Using Different Photovoltaic Cells
,”
Int. J. Energy Res.
, p.
er.6925
.
20.
Cheng
,
K.
,
Qin
,
J.
,
Jiang
,
Y.
,
Lv
,
C.
,
Zhang
,
S.
, and
Bao
,
W.
,
2018
, “
Performance Assessment of Multi-Stage Thermoelectric Generators on Hypersonic Vehicles at a Large Temperature Difference
,”
Appl. Therm. Eng.
,
130
, pp.
1598
1609
.
21.
Zhang
,
H.
,
Xu
,
H.
,
Chen
,
B.
,
Dong
,
F.
, and
Ni
,
M.
,
2017
, “
Two-Stage Thermoelectric Generators for Waste Heat Recovery From Solid Oxide Fuel Cells
,”
Energy
,
132
, pp.
280
288
.
22.
Cheng
,
K.
,
Zhang
,
D.
,
Qin
,
J.
,
Zhang
,
S.
, and
Bao
,
W.
,
2018
, “
Performance Evaluation and Comparison of Electricity Generation Systems Based on Single- and Two-Stage Thermoelectric Generator for Hypersonic Vehicles
,”
Acta Astronaut.
,
151
, pp.
15
21
.
23.
Lee
,
M.-Y.
,
Seo
,
J.
,
Lee
,
H.
, and
Garud
,
K. S.
,
2020
, “
Power Generation, Efficiency and Thermal Stress of Thermoelectric Module With Leg Geometry, Material, Segmentation and Two-Stage Arrangement
,”
Symmetry (Basel)
,
12
(
5
), p.
786
.
24.
Liu
,
Z.
,
Zhu
,
S.
,
Ge
,
Y.
,
Shan
,
F.
,
Zeng
,
L.
, and
Liu
,
W.
,
2017
, “
Geometry Optimization of Two-Stage Thermoelectric Generators Using Simplified Conjugate-Gradient Method
,”
Appl. Energy
,
190
, pp.
540
552
.
25.
Cheng
,
K.
,
Qin
,
J.
,
Jiang
,
Y.
,
Zhang
,
S.
, and
Bao
,
W.
,
2018
, “
Performance Comparison of Single- and Multi-Stage Onboard Thermoelectric Generators and Stage Number Optimization at a Large Temperature Difference
,”
Appl. Therm. Eng.
,
141
, pp.
456
466
.
26.
Zhang
,
F.
,
Cheng
,
L.
,
Wu
,
M.
,
Xu
,
X.
,
Wang
,
P.
, and
Liu
,
Z.
,
2020
, “
Performance Analysis of Two-Stage Thermoelectric Generator Model Based on Latin Hypercube Sampling
,”
Energy Convers. Manage.
,
221
, p.
113159
.
27.
Kanimba
,
E.
,
Pearson
,
M.
,
Sharp
,
J.
,
Stokes
,
D.
,
Priya
,
S.
, and
Tian
,
Z.
,
2017
, “
A Modeling Comparison Between a Two-Stage and Three-Stage Cascaded Thermoelectric Generator
,”
J. Power Sources
,
365
, pp.
266
272
.
28.
Sun
,
H.
,
Ge
,
Y.
,
Liu
,
W.
, and
Liu
,
Z.
,
2019
, “
Geometric Optimization of Two-Stage Thermoelectric Generator Using Genetic Algorithms and Thermodynamic Analysis
,”
Energy
,
171
, pp.
37
48
.
29.
Guo
,
X.
,
Zhang
,
H.
,
Wang
,
J.
,
Zhao
,
J.
,
Wang
,
F.
,
Miao
,
H.
,
Yuan
,
J.
, and
Hou
,
S.
,
2020
, “
A New Hybrid System Composed of High-Temperature Proton Exchange Fuel Cell and Two-Stage Thermoelectric Generator With Thomson Effect: Energy and Exergy Analyses
,”
Energy
,
195
, p.
117000
.
30.
Mgbemene
,
C. A.
,
Njoku
,
H. O.
, and
Agbo
,
C. O. A.
,
2018
, “
Investigation of Parametric Performance of the Hybrid 3D CPC/TEM System Due to Thermoelectric Irreversibilities
,”
Front. Energy Res.
,
6
, pp.
1
11
.
31.
Erturun
,
U.
,
Erermis
,
K.
, and
Mossi
,
K.
,
2014
, “
Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
126
139
.
32.
Maduabuchi
,
C.
, and
Eke
,
M.
,
2021
, “
Solar Electricity Generation Using a Photovoltaic-Thermoelectric System Operating in Nigeria Climate
,”
IOP Conference Series: Earth and Environmental Science
,
University of Nigeria, Nsukka, Enugu State, Nigeria
,
November 2020
, Vol.
730
, p.
012029
.
33.
Xuan
,
X.
,
Ng
,
K.
,
Yap
,
C.
, and
Chua
,
H.
,
2002
, “
The Maximum Temperature Difference and Polar Characteristic of Two-Stage Thermoelectric Coolers
,”
Cryogenics (Guildf)
,
42
(
5
), pp.
273
278
.
34.
Shittu
,
S.
,
Li
,
G.
,
Xuan
,
Q.
,
Zhao
,
X.
,
Ma
,
X.
, and
Cui
,
Y.
,
2020
, “
Electrical and Mechanical Analysis of a Segmented Solar Thermoelectric Generator Under Non-Uniform Heat Flux
,”
Energy
,
199
, p.
117433
.
35.
Shittu
,
S.
,
Li
,
G.
,
Zhao
,
X.
,
Ma
,
X.
,
Akhlaghi
,
Y. G.
, and
Fan
,
Y.
,
2020
, “
Comprehensive Study and Optimization of Concentrated Photovoltaic-Thermoelectric Considering All Contact Resistances
,”
Energy Convers. Manage.
,
205
, p.
112422
.
36.
Maduabuchi
,
C. C.
,
Mgbemene
,
C. A.
, and
Ibeagwu
,
O. I.
,
2020
, “
Thermally Induced Delamination of PV-TEG: Implication of Leg’s Joule and Thomson Heating
,”
J. Electron. Mater.
,
49
(
11
), pp.
6417
6427
.
37.
Maduabuchi
,
C.
,
Ejenakevwe
,
K.
,
Ndukwe
,
A.
, and
Mgbemene
,
C.
,
2021
, “
High Performance Solar Thermoelectric Generator Using Asymmetrical Variable Leg Geometries
,”
E3S Web Conference
,
Rome, Italy
, Vol.
239
, p.
00005
.
38.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2018
,
Fundamentals of Engineering Thermodynamics
, 9th ed.,
Wiley
,
Hoboken, NJ
.
39.
Maduabuchi
,
C. C.
, and
Mgbemene
,
C. A.
,
2020
, “
Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator
,”
J. Electron. Mater.
,
49
(
10
), pp.
5917
5936
.
40.
Maduabuchi
,
C. C.
, and
Mgbemene
,
C. A.
,
2020
, “
Numerical Analysis and Simulation of a Hybrid Concentrated Thermoelectric Module With Phase Change Material
,”
2020 Sustainable Engineering and Industrial Technology Conference
,
Nsukka, Enugu
,
July
, pp.
1
3
.
41.
Lamba
,
R.
,
Manikandan
,
S.
, and
Kaushik
,
S. C.
,
2018
, “
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
,”
J. Electron. Mater.
,
47
(
9
), pp.
5310
5320
.
42.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
43.
Maduabuchi
,
C.
,
Ejenakevwe
,
K.
,
Jacobs
,
I.
, and
Ndukwe
,
A.
,
2020
, “
Analysis of a Two-Stage Variable Leg Geometry Solar Thermoelectric Generator
,”
2nd African International Conference and Industrial Engineering and Operations Management
,
Harare, Zimbabwe
,
November
, pp.
1
7
.
44.
Maduabuchi
,
C. C.
,
Eke
,
M. N.
, and
Mgbemene
,
C. A.
,
2021
, “
Solar Power Generation Using a Two-Stage X-Leg Thermoelectric Generator With High-Temperature Materials
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13163
13181
.
45.
Maduabuchi
,
C. C.
,
Ejenakevwe
,
K. A.
, and
Mgbemene
,
C. A.
,
2021
, “
Performance Optimization and Thermodynamic Analysis of Irreversibility in a Contemporary Solar Thermoelectric Generator
,”
Renew. Energy
,
168
, pp.
1189
1206
.
46.
Maduabuchi
,
C.
,
Njoku
,
H.
,
Eke
,
M.
,
Mgbemene
,
C.
,
Lamba
,
R.
, and
Ibrahim
,
J. S.
,
2021
, “
Overall Performance Optimisation of Tapered Leg Geometry Based Solar Thermoelectric Generators Under Isoflux Conditions
,”
J. Power Sources
,
500
, p.
229989
.
47.
Ust
,
Y.
,
Sahin
,
B.
, and
Sogut
,
O. S.
,
2005
, “
Performance Analysis and Optimization of an Irreversible Dual-Cycle Based on an Ecological Coefficient of Performance Criterion
,”
Appl. Energy
,
82
(
1
), pp.
23
39
.
48.
Akkaya
,
A.
,
Sahin
,
B.
, and
Huseyinerdem
,
H.
,
2007
, “
Exergetic Performance Coefficient Analysis of a Simple Fuel Cell System
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4600
4609
.
49.
Ibeagwu
,
O. I.
,
Eke
,
M. N.
,
Maduabuchi
,
C. C.
,
Mgbemene
,
C. A.
, and
Aka
,
T. V.
,
2020
, “
Particle Overlay Obstruction Modelling, Parametric and Output Characteristics Evaluation of a Photovoltaic System
,”
Niger. Res. J. Eng. Environ. Sci.
,
5
, pp.
679
693
.
50.
Lee
,
H.
,
2010
,
Thermal Design Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells
, 1st ed.,
John Wiley & Sons Ltd
,
Hoboken, NJ
.
51.
Shittu
,
S.
,
Li
,
G.
,
Zhao
,
X.
,
Ma
,
X.
,
Akhlaghi
,
Y. G.
, and
Ayodele
,
E.
,
2019
, “
High Performance and Thermal Stress Analysis of a Segmented Annular Thermoelectric Generator
,”
Energy Convers. Manage.
,
184
, pp.
180
193
.
52.
Shittu
,
S.
,
Li
,
G.
,
Xuan
,
Q.
,
Xiao
,
X.
,
Zhao
,
X.
,
Ma
,
X.
, and
Akhlaghi
,
Y. G.
,
2020
, “
Transient and Non-Uniform Heat Flux Effect on Solar Thermoelectric Generator With Phase Change Material
,”
Appl. Therm. Eng.
,
173
, pp.
1
15
.
53.
Xiao
,
J.
,
Yang
,
T.
,
Li
,
P.
,
Zhai
,
P.
, and
Zhang
,
Q.
,
2012
, “
Thermal Design and Management for Performance Optimization of Solar Thermoelectric Generator
,”
Appl. Energy
,
93
, pp.
33
38
.
You do not currently have access to this content.