Abstract

This paper addresses two key decisions by households to adopt rooftop solar photovoltaic (PV) systems and the length of time until the adoption. It is hypothesized that these decisions are controlled by different mechanisms and should be modeled independently. This is the first attempt to formally estimate the length of time until the adoption to the authors’ knowledge. Two models are presented in this paper. The first is a mixed logit to model the respondents’ intention to adopt a solar PV system, and the second is a random parameters ordered probit to estimate the length of time until the adoption. Estimation results show that the number of electrical appliances, the households’ interest to harness economic benefits, and the type and characteristics of the dwelling motivate households to select a shorter duration until the adoption. Results also show that the majority (77.80%) of respondents with electric vehicles are highly likely to adopt a rooftop system and select a shorter time duration until adoption. In addition, a significant proportion (83.23%) of respondents with high monthly electricity bills is more likely to adopt a rooftop PV system and select a shorter time duration. Results show that the average monthly electricity bill for households with a PV system has decreased by 74.04%. Reducing monthly electricity bills is a key instigator for adopting a rooftop PV system. Our results confirm the hypothesis that even if there is an intent to adopt a rooftop solar PV system, the length of time until the adoption is controlled by another mechanism.

References

1.
Amado
,
M.
, and
Poggi
,
F.
,
2012
, “
Towards Solar Urban Planning: A New Step for Better Energy Performance
,”
Energy Procedia
,
30
(
1
), pp.
1261
1273
.
2.
Gautam
,
B. R.
,
Li
,
F.
, and
Ru
,
G.
,
2015
, “
Assessment of Urban Roof Top Solar Photovoltaic Potential to Solve Power Shortage Problem in Nepal
,”
Energy Build.
,
86
(
1
), pp.
735
744
.
3.
Janda
,
K. B.
, and
Parag
,
Y.
,
2013
, “
A Middle-out Approach for Improving Energy Performance in Buildings
,”
Build. Res. Inf.
,
41
(
1
), pp.
39
50
.
4.
Kim
,
D.
,
Cho
,
H.
, and
Luck
,
R.
,
2019
, “
Potential Impacts of Net-Zero Energy Buildings With Distributed Photovoltaic Power Generation on the U.S. Electrical Grid
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062005
.
5.
Abu-Rayash
,
A.
, and
Dincer
,
I.
,
2021
, “
A Sustainable Trigeneration System for Residential Applications
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012101
.
6.
Meraj
,
M.
,
Mahmood
,
S. M.
,
Khan
,
M. E.
,
Azhar
,
M.
, and
Tiwari
,
G. N.
,
2020
, “
Effect of N-Photovoltaic Thermal Integrated Parabolic Concentrator on Milk Temperature for Pasteurization: A Simulation Study
,”
Renewable Energy
,
163
(
1
), pp.
2153
2164
.
7.
De Groote
,
O.
,
Pepermans
,
G.
, and
Verboven
,
F.
,
2016
, “
Heterogeneity in the Adoption of Photovoltaic Systems in Flanders
,”
Energy Econ.
,
59
(
1
), pp.
45
57
.
8.
Ammar
,
M. B.
,
Ammar
,
R. B.
, and
Oualha
,
A.
,
2021
, “
Photovoltaic Power Prediction for Solar Car Park Lighting Office Energy Management
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031303
.
9.
López Vega
,
A.
,
Rubio-Maya
,
C.
,
Kowalski
,
G. J.
, and
Pacheco Ibarra
,
J. J.
,
2020
, “
Analysis of the Design and Operation of a Hybrid Trigeneration-Photovoltaic System Installed in a Shopping Mall
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012101
.
10.
Best
,
R.
,
Burke
,
P. J.
, and
Nishitateno
,
S.
,
2019
, “
Understanding the Determinants of Rooftop Solar Installation: Evidence From Household Surveys in Australia
,”
Aust. J. Agric. Resour. Econ.
,
63
(
4
), pp.
922
939
.
11.
Alipour
,
M.
,
Salim
,
H.
,
Stewart
,
R. A.
, and
Sahin
,
O.
,
2020
, “
Predictors, Taxonomy of Predictors, and Correlations of Predictors With the Decision Behaviour of Residential Solar Photovoltaics Adoption: A Review
,”
Renewable Sustainable Energy Rev.
,
123
(
1
), p.
109749
.
12.
Fina
,
B.
,
Fleischhacker
,
A.
,
Auer
,
H.
, and
Lettner
,
G.
,
2018
, “
Economic Assessment and Business Models of Rooftop Photovoltaic Systems in Multi Apartment Buildings: Case Studies for Austria and Germany
,”
Renewable Energy
,
2018
(
1
), p.
9759680
.
13.
Zhai
,
P.
, and
Williams
,
E. D.
,
2012
, “
Analysing Consumer Acceptance of Photovoltaics (PV) Using Fuzzy Logic Model
,”
Renewable Energy
,
41
(
1
), pp.
350
357
.
14.
Coffman
,
M.
,
Bernstein
,
P.
, and
Wee
,
S.
,
2017
, “
Integrating Electric Vehicles and Residential Solar PV
,”
Transp. Policy
,
53
(
1
), pp.
30
38
.
15.
Kesari
,
B.
,
Atulkar
,
S.
, and
Pandey
,
S.
,
2018
, “
Consumer Purchasing Behaviour Towards Eco-Environment Residential Photovoltaic Solar Lighting Systems
,”
Global Bus. Rev.
,
3
(
1
), pp.
1
19
.
16.
Balta-Ozkan
,
N.
,
Yildirim
,
J.
, and
Connor
,
P. M.
,
2015
, “
Regional Distribution of Photovoltaic Deployment in the UK and Its Determinants: A Spatial Econometric Approach
,”
Energy Econ.
,
51
(
1
), pp.
417
429
.
17.
Dato
,
P.
,
2018
, “
Investment in Energy Efficiency, Adoption of Renewable Energy and Household Behaviour: Evidence From OECD Countries
,”
Energy J.
,
39
(
3
), p.
213
.
18.
Zorić
,
J.
, and
Hrovatin
,
N.
,
2012
, “
Household Willingness to Pay for Green Electricity in Slovenia
,”
Energy Policy
,
47
(
1
), pp.
180
187
.
19.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Qandil
,
H. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
A Stand-Alone Hybrid Photovoltaic, Fuel Cell, and Battery System: Case Studies in Jordan
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111201
.
20.
Vesterberg
,
M.
,
Zhou
,
W.
, and
Lundgren
,
T.
,
2021
, “
Wind of Change: Small-Scale Electricity Production and Distribution-Grid Efficiency in Sweden
,”
Util. Policy
,
69
(
4
), p.
101175
.
21.
Ek
,
K.
,
2005
, “
Public and Private Attitudes Towards “Green” Electricity: The Case of Swedish Wind Power
,”
Energy Policy
,
33
(
13
), pp.
1677
1689
.
22.
Goett
,
A. A.
,
Hudson
,
K.
, and
Train
,
K. E.
,
2000
, “
Customers’ Choice Among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes
,”
Energy J.
,
4
(
1
), pp.
1
28
.
23.
Borchers
,
A. M.
,
Duke
,
J. M.
, and
Parsons
,
G. R.
,
2007
, “
Does Willingness to Pay for Green Energy Differ by Source?
,”
Energy Policy
,
35
(
6
), pp.
3327
3334
.
24.
Kotchen
,
M. J.
, and
Moore
,
M. R.
,
2007
, “
Private Provision of Environmental Public Goods: Household Participation in Green-Electricity Programs
,”
J. Environ. Econ. Manage.
,
53
(
1
), pp.
1
16
.
25.
Hansla
,
A.
,
Gamble
,
A.
,
Juliusson
,
A.
, and
Gärling
,
T.
,
2008
, “
Psychological Determinants of Attitude Towards and Willingness to Pay for Green Electricity
,”
Energy Policy
,
36
(
2
), pp.
768
774
.
26.
Küfeoğlu
,
S.
, and
Pollitt
,
M. G.
,
2019
, “
The Impact of PVs and EVs on Domestic Electricity Network Charges: A Case Study From Great Britain
,”
Energy Policy
,
127
(
1
), pp.
412
424
.
27.
Cabral
,
J.
,
Cabral
,
M.
, and
Pereira
,
A.
,
2020
, “
Elasticity Estimation and Forecasting: An Analysis of Residential Electricity Demand in Brazil
,”
Util. Policy
,
66
(
1
), p.
101108
.
28.
Al Masri
,
A.
,
2020
, “
Household Demand for Rooftops Solar Panels in Jordan
,” A thesis submitted in partial fulfilment of the requirements for the Master's Degree of Science at the German Jordanian University.
29.
Anastasopoulos
,
P. C.
, and
Mannering
,
F. L.
,
2011
, “
An Empirical Assessment of Fixed and Random Parameter Logit Models Using Crash- and Non-Crash-Specific Injury Data
,”
Accid. Anal. Prev.
,
43
(
3
), pp.
1140
1147
.
30.
Mannering
,
F. L.
,
2018
, “
Temporal Instability and the Analysis of Highway Accident Data
,”
Anal. Methods Accid. Res.
,
17
(
1
), pp.
1
13
.
31.
Hamed
,
M. M.
, and
Al-Eideh
,
B. M.
,
2020
, “
An Exploratory Analysis of Traffic Accidents and Vehicle Ownership Decisions Using a Random Parameters Logit Model With Heterogeneity in Means
,”
Anal. Methods Accid. Res.
,
25
(
1
), p.
100116
.
32.
Washington
,
S.
,
Karlaftis
,
M. G.
, and
Mannering
,
F. L.
,
2011
,
Statistical and Econometric Methods for Transportation Data Analysis
,
CRC Press
,
Thames, Oxfordshire, UK
.
33.
Hensher
,
D.
, and
Greene
,
W. H.
,
2003
, “
The Mixed Logit Model: The State of Practice
,”
Transportation
,
30
(
2
), pp.
133
176
.
34.
McFadden
,
D.
,
1981
, “Econometric Models of Probabilistic Choice,”
Structural Analysis of Discrete Data With Econometric Applications
,
C
Manski
, and
D
McFadden
, eds.,
M.I.T. Press
,
Cambridge
, p.
198272
.
35.
Seraneeprakarn
,
P.
,
Huang
,
S.
,
Shankar
,
V.
,
Mannering
,
F. L.
,
Venkataraman
,
N.
, and
Milton
,
J.
,
2017
, “
Occupant Injury Severities in Hybrid-Vehicle Involved Crashes: A Random Parameters Approach With Heterogeneity in Means and Variances
,”
Anal. Methods Accid. Res.
,
15
(
1
), pp.
41
55
.
36.
Harris
,
M. N.
, and
Zhao
,
X.
,
2007
, “
A Zero-Inflated Ordered Probit Model, With an Application to Modelling Tobacco Consumption
,”
J. Econometrics
,
141
(
2
), pp.
1073
1099
.
37.
McKelvey
,
R. D.
, and
Zavoina
,
W.
,
1975
, “
A Statistical Model for the Analysis of Ordinal Level Dependent Variables
,”
J. Math. Sociol.
,
4
(
1
), pp.
103
120
.
38.
Hamed
,
M. M.
, and
Easa
,
S.
,
1998
, “
Integrated Modeling of Urban Shopping Activities
,”
J. Urban Plann. Dev.
,
124
(
3
), pp.
115
131
.
39.
Hamed
,
M. M.
, and
Easa
,
S.
,
1998
, “
Ordered Probability Modeling of Seat Belt Usage
,”
J. Transp. Eng.
,
124
(
3
), pp.
271
276
.
40.
Hamed
,
M. M.
,
1990
, “
Modelling the Demand for Taxicab Services
,”
Road Transp. Res.
,
8
(
3
), pp.
22
33
.
41.
Hamed
,
M. M.
, and
Abdul-Hussain
,
A.
,
2001
, “
Drivers’ Familiarity With Urban Route Network Layout in Amman, Jordan
,”
Cities
,
18
(
2
), pp.
93
101
.
42.
Duncan
,
C. S.
,
Khattak
,
A. J.
, and
Council
,
F. M.
,
1998
, “
Applying the Ordered Probit Model to Injury Severity in Truck-Passenger Car Rear-End Collisions
,”
Transp. Res. Rec.
,
1635
(
1
), pp.
63
71
.
43.
Anastasopoulos
,
P. C.
,
Haddock
,
J. E.
,
Karlaftis
,
M. G.
, and
Mannering
,
F. L.
,
2012
, “
Analysis of Urban Travel Times: Hazard-Based Approach to Random Parameters
,”
Transp. Res. Rec.
,
2302
(
1
), pp.
121
129
.
44.
Mannering
,
F. L.
,
Shankar
,
V.
, and
Bhat
,
C. R.
,
2016
, “
Unobserved Heterogeneity and the Statistical Analysis of Highway Accident Data
,”
Anal. Methods Accid. Res.
,
11
(
1
), pp.
1
16
.
45.
Fountas
,
G.
,
Anastasopoulos
,
P. C.
, and
Abdel-Aty
,
M.
,
2018
, “
Analysis of Accident Injury Severities Using a Correlated Random Parameters Ordered Probit Approach With Time Variant Covariates
,”
Anal. Methods Accid. Res.
,
18
(
1
), pp.
57
68
.
46.
Bondio
,
S.
,
Shahnazari
,
M.
, and
McHugh
,
A.
,
2018
, “
The Technology of the Middle Class: Understanding the Fulfilment of Adoption Intentions in Queensland’s Rapid Uptake Residential Solar Photovoltaics Market
,”
Renewable Sustainable Energy Rev.
,
93
(
1
), pp.
642
651
.
47.
Hardman
,
S.
,
Shiu
,
E.
, and
Steinberger-Wilckens
,
R.
,
2016
, “
Comparing High-End and Low End Early Adopters of Battery Electric Vehicles
,”
Transp. Res. Part A: Policy Pract.
,
88
(
1
), pp.
40
57
.
48.
Shi
,
L.
,
Zhou
,
W.
, and
Kriström
,
B.
,
2013
, “
Residential Demand for Green Electricity
,”
Environ. Econ.
,
4
(
1
), pp.
39
50
.
49.
Walters
,
J. P.
,
Kaminsky
,
J.
, and
Huepe
,
C.
,
2018
, “
Factors Influencing Household Solar Adoption in Santiago, Chile
,”
J. Constr. Eng. Manage.
,
144
(
6
), p.
05018004
.
50.
Gu
,
G.
, and
Feng
,
T.
,
2020
, “
Heterogeneous Choice of Home Renewable Energy Equipment Conditioning on the Choice of Electric Vehicles
,”
Renewable Energy
,
154
(
1
), pp.
394
403
.
51.
Wang
,
N.
,
Tang
,
L.
, and
Pan
,
H.
,
2019
, “
A Global Comparison and Assessment of Incentive Policy on Electric Vehicle Promotion
,”
Sustainable Cities Soc.
,
44
(
1
), pp.
597
603
.
52.
Hamed
,
M. M.
, and
Abdelwahab
,
W.
,
1996
, “
Effect of Government Policies and Vehicle Marketing Strategies on Household Vehicle Demand and Fuel Consumption
,”
Can. J. Civil Eng.
,
23
(
3
), pp.
587
594
.
You do not currently have access to this content.