Abstract

Many reports have indicated that, in contrast to waterflooding, oil–water relative permeabilities in polymer flooding are influenced by the polymer properties, such as adsorption and viscoelasticity. Long-term injected polymer solutions flush the reservoir porous media causing wettability alteration and residual oil reduction, which is also an important factor for oil–water relative permeabilities. Therefore, the comprehensive effects of polymer properties and dynamic flushing on two-phase percolation behavior have been the focus of research. In this study, polymer flow experiments, including pre-shearing, relative permeability, and long-term erosion tests, were first conducted. Then, a flushing-interpolation model, including polymer concentration interpolation and surface flux characterization, was developed to dynamically describe the two-phase flow characteristics. Based on the experimental results and the presented dynamic model, polymer-flooding simulations were conducted to analyze the performance of the well and the distribution of the remaining oil. The results indicate that flushing reduces the residual oil saturation, and the viscoelasticity effect further broadens the predominant flushing channels horizontally; both effects lead to higher cumulative oil production and a lower water-cut. Additionally, including the flushing effect in the polymer-flooding model leads to a more reliable numerical prediction of the remaining oil distribution. To account for the comprehensive effects of viscoelasticity and erosion in field applications, water-cut history matching was performed for the studied well group, and the error decreased to 4.39%. Finally, the optimal polymer concentration for high-concentration polymer-flooding programs was determined to be 1450 mg/L.

References

1.
Yang
,
Z.
,
Neuweiler
,
I.
,
Meheust
,
Y.
,
Fagerlund
,
F.
, and
Niemi
,
A.
,
2016
, “
Fluid Trapping During Capillary Displacement in Fractures
,”
Adv. Water Res.
,
95
, pp.
264
275
.
2.
Gong
,
Y.
,
Sedghi
,
M.
, and
Piri
,
M.
,
2021
, “
Dynamic Pore-Scale Modeling of Residual Trapping Following Imbibition in a Rough-Walled Fracture
,”
Transp. Porous Media
,
140
, pp.
143
179
.
3.
Al-Hajri
,
S.
,
Mahmood
,
S.
,
Abdulelah
,
H.
, and
Akbari
,
S.
,
2018
, “
An Overview on Polymer Retention in Porous Media
,”
Energies
,
11
(
10
), p.
2751
.
4.
Standnes
,
D. C.
, and
Skjevrak
,
I.
,
2014
, “
Literature Review of Implemented Polymer Field Projects
,”
J. Pet. Sci. Eng.
,
122
, pp.
761
775
.
5.
Zhang
,
A.
,
Fan
,
Z.
,
Zhao
,
L.
,
Wang
,
J.
, and
Song
,
H.
,
2021
, “
A New Methodology of Production Performance Prediction for Strong Edge-Water Reservoir
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083005
.
6.
Sun
,
X.
,
Zhang
,
Y.
,
Wu
,
J.
,
Xie
,
M.
, and
Hu
,
H.
,
2019
, “
Optimized Cyclic Water Injection Strategy for Oil Recovery in Low-Permeability Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012905
.
7.
Schneider
,
F. N.
, and
Owens
,
W. W.
,
1982
, “
Steady-State Measurements of Relative Permeability for Polymer/Oil Systems
,”
Soc. Pet. Eng. J.
,
22
(
1
), pp.
79
86
.
8.
Zhou
,
X.
,
Dong
,
M.
, and
Maini
,
B.
,
2013
, “
The Dominant Mechanism of Enhanced Heavy Oil Recovery by Chemical Flooding in a Two-Dimensional Physical Model
,”
Fuel
,
108
, pp.
261
268
.
9.
Benke
,
S.
,
Ruifeng
,
W.
,
Hui
,
Z.
, and
Quandong
,
F.
,
2006
, “
Experimental Study on the Characteristics of Reservoir Oil Saturation and Permeability Changes Both Before and After Polymer Flooding
,”
J. Oil Gas Technol.
,
28
(
4
), pp.
128
130
.
10.
Ding
,
M.
,
Han
,
Y.
,
Wang
,
Y.
,
Liu
,
Y.
,
Liu
,
D.
, and
Qu
,
Z.
,
2021
, “
Experimental Investigation of the Heterogeneity Limit for the Application of Polymer Flooding in Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022901
.
11.
Wassmuth
,
F. R.
,
Green
,
K.
,
Arnold
,
W.
, and
Cameron
,
N.
,
2009
, “
Polymer Flood Application to Improve Heavy Oil Recovery at East Bodo
,”
J. Can. Pet. Technol.
,
48
(
2
), pp.
55
61
.
12.
Liu
,
B.
,
Sun
,
X. S.
,
Wang
,
K.
,
Xu
,
H.
,
Liu
,
Q.
,
Liu
,
X.
, and
Song
,
S.
,
2007
, “
Flooded by High Concentration Polymer Doubled Oil Recovery of Common Polymer on Field Test With 20% Closed to the Result of Lab Test in Daqing
,”
International Oil Conference and Exhibition
,
Mexico City, Mexico
,
Jun. 27–30
, SPE Paper No.108684-MS.
13.
Moe Soe Let
,
K. P.
,
Manichand
,
R. N.
, and
Seright
,
R. S.
,
2012
, “
Polymer Flooding a ∼500-Cp Oil
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 14–18
, SPE Paper No.154567-MS.
14.
Cao
,
W.
,
Xie
,
K.
,
Lu
,
X.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Effect of Profile-Control Oil-Displacement Agent on Increasing Oil Recovery and Its Mechanism
,”
Fuel
,
237
, pp.
1151
1160
.
15.
Delamaide
,
E.
,
Zaitoun
,
A.
,
Renard
,
G.
, and
Tabary
,
R.
,
2013
, “
Pelican Lake Polymer Flood—First Successful Application in a High Viscosity Reservoir
,”
IOR 2013-17th European Symposium on Improved Oil Recovery
,
Saint Petersburg, Russia
,
Apr. 16–18
, p. B33.
16.
Aldhaheri
,
M.
,
Wei
,
M.
,
Alhuraishawy
,
A.
, and
Bai
,
B.
,
2021
, “
Field Performances, Effective Times, and Economic Assessments of Polymer Gel Treatments in Controlling Excessive Water Production From Mature Oil Fields
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080804
.
17.
Ferreira
,
V. H. S.
, and
Moreno
,
R. B. Z. L.
,
2020
, “
Polyacrylamide Adsorption and Readsorption in Sandstone Porous Media
,”
SPE J.
,
25
(
1
), pp.
497
514
.
18.
Sorbie
,
K. S.
,
1991
, “Polymer Retention in Porous Media,”
Polymer-Improved Oil Recovery
,
K. S.
Sorbie
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
126
164
.
19.
Zitha
,
P.
,
Chauveteau
,
G.
, and
Zaitoun
,
A.
,
1995
, “
Permeability∼Dependent Propagation of Polyacrylamides Under Near-Wellbore Flow Conditions
,”
SPE International Symposium on Oilfield Chemistry
,
San Antonio, TX
,
Feb. 14–17
, SPE Paper No.28955-MS.
20.
Zaitoun
,
A.
, and
Kohler
,
N.
,
1987
, “
The Role of Adsorption in Polymer Propagation Through Reservoir Rocks
,”
SPE International Symposium on Oilfield Chemistry
,
San Antonio, TX
,
Feb. 4–6
, SPE Paper No.16274-MS.
21.
Grattoni
,
C. A.
,
Luckham
,
P. F.
,
Jing
,
X. D.
,
Norman
,
L.
, and
Zimmerman
,
R. W.
,
2004
, “
Polymers as Relative Permeability Modifiers: Adsorption and the Dynamic Formation of Thick Polyacrylamide Layers
,”
J. Pet. Sci. Eng.
,
45
(
3
), pp.
233
245
.
22.
Guo
,
C.
,
Gang
,
Z.
, and
Ma
,
Y. L.
,
2006
, “
Mathematical Model of Enhanced oil Recovery for Viscous-Elastic Polymer Flooding
,”
J. Tsinghua Univ. (Sci. Technol.)
,
46
(
6
), pp.
882
885
.
23.
User`s Guide for UTCHEM-5.32 m a Three Dimensional Chemical Flood Simulator,
Final Report
, September 30, 1992–December 31, 1995.
24.
Barreau
,
P.
,
Lasseux
,
D.
,
Bertin
,
H.
,
Glenat
,
P.
, and
Zaitoun
,
A.
,
1999
, “
An Experimental and Numerical Study of Polymer Action on Relative Permeability and Capillary Pressure
,”
Pet. Geosci.
,
5
(
2
), pp.
201
206
.
25.
Computer Modelling Group
,
2019
,
User’s Guide STARS-Advanced Process and Thermal Reservoir Simulator
,
Computer Modelling Group Ltd.
,
Alberta, Canada
.
26.
Pandey
,
A.
,
Suresh Kumar
,
M.
,
Beliveau
,
D.
, and
Corbishley
,
D. W.
,
2008
, “
Chemical Flood Simulation of Laboratory Corefloods for the Mangala Field: Generating Parameters for Field-Scale Simulation
,”
SPE Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 19–23
, SPE Paper No.113347-MS.
27.
Hatzignatiou
,
D. G.
,
Norris
,
U. L.
, and
Stavland
,
A.
,
2013
, “
Core-Scale Simulation of Polymer Flow Through Porous Media
,”
J. Pet. Sci. Eng.
,
108
, pp.
137
150
.
28.
Zampieri
,
M. F.
,
Ferreira
,
V. H. S.
,
Quispe
,
C. C.
,
Sanches
,
K. K. M.
, and
Moreno
,
R. B. Z. L.
,
2020
, “
History Matching of Experimental Polymer Flooding for Enhanced Viscous Oil Recovery
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), p.
205
.
29.
Wang
,
D.
,
Cheng
,
J.
,
Yang
,
Q.
,
Gong
,
W.
,
Li
,
Q.
, and
Chen
,
F.
,
2000
, “
Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4
, SPE Paper No.63227-MS.
30.
Wang
,
D.
,
Wang
,
G.
,
Wu
,
W.
,
Xia
,
H.
, and
Yin
,
H.
,
2007
, “
The Influence of Viscoelasticity on Displacement Efficiency—From Micro to Macro Scale
,”
SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
,
Nov. 11–14
, SPE Paper No.109016-MS.
31.
Qi
,
P.
,
Ehrenfried
,
D. H.
,
Koh
,
H.
, and
Balhoff
,
M. T.
,
2016
, “
Reduction of Residual Oil Saturation in Sandstone Cores Using Viscoelastic Polymers
,”
SPE Improved Oil Recovery Conference
,
Tulsa, OK
,
Apr. 11–13
, SPE Paper No.179689-MS.
32.
Howe
,
A. M.
,
Clarke
,
A.
, and
Giernalczyk
,
D.
,
2015
, “
Flow of Concentrated Viscoelastic Polymer Solutions in Porous Media: Effect of MW and Concentration on Elastic Turbulence Onset in Various Geometries
,”
Soft Matter
,
11
(
32
), pp.
6419
6431
.
33.
Liu
,
Y.
,
Hou
,
J.
,
Liu
,
L.
,
Zhou
,
K.
,
Zhang
,
Y.
,
Dai
,
T.
,
Guo
,
L.
, and
Cao
,
W.
,
2018
, “
An Inversion Method of Relative Permeability Curves in Polymer Flooding Considering Physical Properties of Polymer
,”
SPE J.
,
23
(
5
), pp.
1929
1943
.
34.
Deng
,
J. F.
,
Li
,
Y. P.
,
Jia
,
X. F.
,
Wu
,
X. H.
, and
Liu
,
B.
,
2017
, “
Dynamic Inverting Method for the Relative Permeability Curves in the Stable Polymer Flooding and Its Application
,”
Pet. Geol. Oilfield Dev. Daqing
,
36
(
3
), pp.
106
109
.
35.
Han
,
C.
,
Delshad
,
M.
,
Sepehrnoori
,
K.
, and
Pope
,
G. A.
,
2007
, “
A Fully Implicit, Parallel, Compositional Chemical Flooding Simulator
,”
SPE J.
,
12
(
3
), pp.
322
338
.
36.
Pope
,
G. A.
,
Wu
,
W.
,
Narayanaswamy
,
G.
,
Delshad
,
M.
,
Sharma
,
M. M.
, and
Wang
,
P.
,
2000
, “
Modeling Relative Permeability Effects in Gas-Condensate Reservoirs With a New Trapping Model
,”
SPE Reservoir Eval. Eng.
,
3
(
2
), pp.
171
178
.
37.
Wang
,
J.
,
Liu
,
H.-Q.
, and
Xu
,
J.
,
2013
, “
Mechanistic Simulation Studies on Viscous-Elastic Polymer Flooding in Petroleum Reservoirs
,”
J. Dispersion Sci. Technol.
,
34
(
3
), pp.
417
426
.
38.
Qi
,
P.
,
Ehrenfried
,
D. H.
,
Koh
,
H.
, and
Balhoff
,
M. T.
,
2017
, “
Reduction of Residual Oil Saturation in Sandstone Cores by Use of Viscoelastic Polymers
,”
SPE J.
,
22
(
2
), pp.
447
458
.
39.
Wang
,
Q.
,
Liu
,
X.
,
Meng
,
L.
,
Jiang
,
R.
, and
Fan
,
H.
,
2020
, “
The Numerical Simulation Study of the Oil–Water Seepage Behavior Dependent on the Polymer Concentration in Polymer Flooding
,”
Energies
,
13
(
19
), p.
5125
.
40.
Jackson
,
M. D.
,
Valvatne
,
P. H.
, and
Blunt
,
M. J.
,
2003
, “
Prediction of Wettability Variation and Its Impact on Flow Using Pore- to Reservoir-Scale Simulations
,”
J. Pet. Sci. Eng.
,
39
(
3
), pp.
231
246
.
41.
Hao
,
L. I.
,
Wang
,
X. W.
, and
Liu
,
S. L.
,
2009
, “
Variation Law of Parameters of Reservoir Physical Property in Old Oilfield
,”
J. Southwest Pet. Univ.
,
31
(
2
), pp.
85
89
.
42.
Jiang
,
R.
,
Zhang
,
W.
,
Zhao
,
P.
,
Jiang
,
Y.
,
Cai
,
M.
,
Tao
,
Z.
,
Zhao
,
M.
, et al
,
2018
, “
Characterization of the Reservoir Property Time-Variation Based on ‘Surface Flux’ and Simulator Development
,”
Fuel
,
234
, pp.
924
933
.
43.
Xu
,
J.
,
Guo
,
C.
,
Wei
,
M.
, and
Jiang
,
R.
,
2015
, “
Impact of Parameters׳ Time Variation on Waterflooding Reservoir Performance
,”
J. Pet. Sci. Eng.
,
126
, pp.
181
189
.
44.
Cui
,
C. Z.
, and
Zhao
,
X. Y.
,
2004
, “
The Reservoir Numerical Simulation Study With the Variety of Reservoir Parameters
,”
J. Hydrodyn.
,
19
, pp.
912
915
.
45.
Gai
,
Y.
,
Lu
,
D.
, and
Guo
,
Y.
,
2000
, “
Numerical Simulation by Stages About the Reservoir at High Water Cut Period
,”
Oil Gas Recovery Tech.
,
7
(
1
), pp.
54
56
.
46.
Liu
,
W.
, and
Xing
,
L.
,
2007
, “
Variations of Physical Property Parameters of Reservoirs After Polymer Flooding
,”
Pet. Geol. Recovery Effic.
,
14
(
4
), pp.
65
67
.
47.
Lei
,
G.
,
Xu
,
Z.
,
Zhang
,
T.
, and
Liu
,
W.
,
1994
, “
Study on the Curve of Polymer Displacement Relative Permeability and Its Influence Factors
,”
J. Hydrodyn.
,
9
(
4
), pp.
469
476
.
48.
Johnson
,
E. F.
,
Bossler
,
D. P.
, and
Bossler
,
V. O. N.
,
1959
, “
Calculation of Relative Permeability From Displacement Experiments
,”
Trans.
,
216
(
1
), pp.
370
372
.
49.
Welge
,
H. J.
,
1952
, “
A Simplified Method for Computing Oil Recovery by Gas or Water Drive
,”
J. Pet. Technol.
,
4
(
4
), pp.
91
98
.
50.
Wei
,
B.
,
Romero-Zerón
,
L.
, and
Rodrigue
,
D.
,
2014
, “
Oil Displacement Mechanisms of Viscoelastic Polymers in Enhanced Oil Recovery (EOR): A Review
,”
J. Pet. Explor. Prod. Technol.
,
4
(
2
), pp.
113
121
.
51.
Rodríguez de Castro
,
A.
,
Oostrom
,
M.
, and
Shokri
,
N.
,
2016
, “
Effects of Shear-Thinning Fluids on Residual Oil Formation in Microfluidic Pore Networks
,”
J. Colloid Interface Sci.
,
472
, pp.
34
43
.
52.
Tang
,
E. G.
,
Zhang
,
X. S.
,
Sun
,
F. J.
, and
Yang
,
J. R.
,
2009
, “
Time Varying Physical Characteristics of Water Flooded Reservoirs in Relation to Performance of Polymer Flood
,”
Oilfield Chem.
,
26
(
3
), pp.
334
337
.
53.
Qiao
,
X.
,
2017
, “
Numerical Simulation and Flow Field Evaluation Considering Physical Properties Time Variation for Waterflooding Reservoir
,”
Master’s thesis
,
China University of Petroleum
,
East China
.
54.
Lin
,
J.
,
Jiang
,
R.
,
Shen
,
Z.
,
Wang
,
Q.
,
Cui
,
Y.
,
Ni
,
Q.
, and
Zhang
,
F.
,
2022
, “
Comprehensive Characterization Investigation of Multiple Time-Varying Rock-Fluid Properties in Waterflooding Development
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073001
.
55.
Lotfollahi
,
M.
,
Farajzadeh
,
R.
,
Delshad
,
M.
,
Al-Abri
,
K.
,
Wassing
,
B. M.
,
Mjeni
,
R.
,
Awan
,
K.
, and
Bedrikovetsky
,
P.
,
2015
, “
Mechanistic Simulation of Polymer Injectivity in Field Tests
,”
SPE Asia Pacific Enhanced Oil Recovery Conference
,
Kuala Lumpur, Malaysia
,
Aug. 11–13
, SPE Paper No.174665-MS.
56.
Lotfollahi
,
M.
,
Farajzadeh
,
R.
,
Delshad
,
M.
,
Al-Abri
,
A.-K.
,
Wassing
,
B. M.
,
Al-Mjeni
,
R.
,
Awan
,
K.
, and
Bedrikovetsky
,
P.
,
2016
, “
Mechanistic Simulation of Polymer Injectivity in Field Tests
,”
SPE J.
,
21
(
4
), pp.
1178
1191
.
57.
Farajzadeh
,
R.
,
Bedrikovetsky
,
P.
,
Lotfollahi
,
M.
, and
Lake
,
L. W.
,
2016
, “
Simultaneous Sorption and Mechanical Entrapment During Polymer Flow Through Porous Media
,”
Water Resour. Res.
,
52
(
3
), pp.
2279
2298
.
58.
Zaitoun
,
A.
, and
Kohler
,
N.
,
1988
, “
Two-Phase Flow Through Porous Media: Effect of an Adsorbed Polymer Layer
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 2–5
, SPE Paper No.18085-MS.
59.
Todd
,
M. R.
, and
Longstaff
,
W. J.
,
1972
, “
The Development, Testing, and Application Of a Numerical Simulator for Predicting Miscible Flood Performance
,”
J. Pet. Technol.
,
24
(
7
), pp.
874
882
.
60.
Bao
,
K.
,
Lie
,
K.-A.
,
Møyner
,
O.
, and
Liu
,
M.
,
2017
, “
Fully Implicit Simulation of Polymer Flooding With MRST
,”
Comput. Geosci.
,
21
(
5
), pp.
1219
1244
.
61.
Delshad
,
M.
,
Pope
,
G.
, and
Sepehrnoori
,
K.
,
2000
,
Utchem Version 9.0 Technical Documentation
,
Center for Petroleum and Geosystems Engineering, The University of Texas at Austin
,
Austin, TX
.
62.
Xia
,
H.
,
2002
,
Viscoelastic Polymer Solution of the Percolation Theory and Its Application
,
Petroleum Industry Press
,
Beijing
.
63.
Jiang
,
R. Z.
,
Cui
,
Y. Z.
,
Hu
,
Y.
,
Qiao
,
X.
,
Gao
,
Y. H.
, and
Xu
,
J. C.
,
2019
, “
Numerical Simulation of Polymer Flooding Considering Reservoir Property Time Variation
,”
Fault Block Oil Gas Field
,
26
(
6
), pp.
751
755
.
You do not currently have access to this content.