Abstract

Large numbers of deep-water drilling practices have shown that more than 60% of deep-water wells have complex leak-off during the drilling process, which poses great difficulties and challenges for the safety and operation time of deep-water drilling. The purpose of this article is to establish a method for predicting the fracture pressure in shallow formations. In this study, the deep-water shallow formation was divided into the upper unconsolidated soil layer, and the lower diagenetic rock layer according to the geotechnical distribution characteristics of the deep-water shallow formation. The location of the transition soil/rock layer zone was determined using the upper soil layer density trend line, and the lower rock layer density log data regression trend line. The deep-water shallow fracture pressure prediction model was established based on the soil/rock transition zone. The shear failure criterion was used above the transition zone, and the tensile failure criterion is used below the transition zone. The shallow fracture pressure of six drilled exploratory wells in the X block from the South China Sea was calculated using this new method and the calculation errors were all less than 3.18%. Moreover, the shallow fracture pressure body in this block was established using the Kriging interpolation method based on six drilled exploratory wells data. This shallow fracture pressure body established here was used to predict nine development wells shallow fracture pressure with a predictive error of less than 1.7% and there were no drilling accidents. The case study demonstrates that the new model can significantly improve the prediction accuracy has good prospects for popularization and application.

References

1.
Sun
,
Q. H.
,
Deng
,
J. G.
,
Yan
,
C. L.
,
Wei
,
B. H.
,
Liu
,
S. J.
,
Liu
,
Z. L.
, and
Xiao
,
K.
,
2015
, “
Calculation Method for Fracture Pressure of Deep sea Shallow Formation
,”
J. Cent. South Univ. (Sci. Technol.)
,
46
(
4
), pp.
1402
1408
.
2.
Yin
,
Q.
,
Yang
,
J.
,
Tyagi
,
M.
,
Zhou
,
X.
,
Hou
,
X.
,
Wang
,
N.
,
Tong
,
G.
, and
Cao
,
B.
,
2021
, “
Machine Learning for Deepwater Drilling: Gas-Kick-Alarm Classification Using Pilot-Scale Rig Data with Combined Surface-Riser-Downhole Monitoring
,”
SPE J.
,
2021
, pp.
1
27
.
3.
Yin
,
Q.
,
Yang
,
J.
,
Hou
,
X.
,
Tyagi
,
M.
,
Zhou
,
X.
,
Cao
,
B.
,
Sun
,
T.
,
Li
,
L.
, and
Xu
,
D.
,
2020
, “
Drilling Performance Improvement in Offshore Batch Wells Based on Rig State Classification Using Machine Learning
,”
J. Pet. Sci. Eng.
,
2020
(
192
), pp.
1
24
.
4.
Eaton
,
B. A.
,
1969
, “
Fracture Gradient Prediction and its Application in Oilfield Operations
,”
J. Pet. Technol.
,
21
(
10
), pp.
1353
1360
.
5.
Eaton
,
B. A.
,
1975
, “
The Equation for Geopressure Prediction From Well Logs
,”
Fall Meeting of the Society of Petroleum Engineers of AIME.
Society of Petroleum Engineers
.
6.
Daines
,
S. R.
,
1980
,
The Prediction of Fracture Pressures for Wildcat Wells
.
7.
Anderson
,
R. A.
,
Ingram
,
D. S.
, and
Zanier
,
A. M.
,
1973
, “
Determining Fracture Pressure Gradients From Well Logs
,”
J. Pet. Technol.
,
25
(
11
), pp.
1259
1268
.
8.
Huang
,
R.
, and
Zhuang
,
J.
,
1986
, “
A new Method to Predict the Fracture Pressure of Sediments
,”
Oil Drill. Prod. Technol.
,
1986
(
3
), pp.
1
14
.
9.
Yan
,
C.
,
Deng
,
J.
,
Hu
,
L.
, and
Yu
,
B.
,
2013
, “
Fracturing Pressure of Shallow Sediment in Deep Water Drilling
,”
Math. Prob. Eng.
,
2013
, pp.
1
8
.
10.
Ahmed
,
A.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2021
, “
Fracture Pressure Prediction Using Surface Drilling Parameters by Artificial Intelligence Techniques
,”
ASME. J. Energy Resour. Technol.
,
143
(
3
), p.
033201
.
11.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME. J. Energy Resour. Technol.
,
132
(
1
), p.
012901
.
12.
Abdelgawad
,
K.
,
Elkatatny
,
S. M.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
13.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
14.
Zhou
,
X.
,
Taleghani
,
A. D.
, and
Choi
,
J. W.
,
2017
, “
Imaging Three-Dimensional Hydraulic Fractures in Horizontal Wells Using Functionally-Graded Electromagnetic Contrasting Proppants
,”
Presented at the Unconventional Resources Technology Conference
,
Austin, TX
,
24–26 July
. URTEC-2697636-MS.
15.
Zhao
,
J.
,
Jiang
,
Y.
,
Li
,
Y.
,
Zhou
,
X.
, and
Wang
,
R.
,
2018
, “
Modeling Fractures and Barriers as Interfaces for Porous Flow with Extended Finite-Element Method
,”
J. Hydrol. Eng.
,
23
(
7
), p.
04018024
.
16.
Jin
,
Y.
,
De
,
Y.
,
Ruirui
,
T.
,
Bo
,
Z.
,
Shujie
,
L.
,
Jianliang
,
Z.
, and
Haixiong
,
T.
,
2013
, “
Bit Stick-out Calculation for the Deepwater Conductor Jetting Technique
,”
Pet. Explor. Dev.
,
40
(
3
), pp.
394
397
.
17.
Xu
,
Y.
,
Zhang
,
H.
, and
Guan
,
Z.
,
2021
, “
Dynamic Characteristics of Downhole Bit Load and Analysis of Conversion Efficiency of Drill String Vibration Energy
,”
Energies
,
14
(
1
), p.
229
.
18.
Yang
,
W.
,
Li
,
B.
, and
Zhang
,
Y.
,
2011
, “
Study on Well Site Investigation Contents and Techniques in Deepwater oil and gas Field
,”
Offshore Oil
,
31
(
2
), pp.
1
7
.
19.
Wang
,
B.
,
Li
,
G.
,
Huang
,
Z.
,
Zheng
,
D.
, and
Li
,
K.
,
2016
, “
Lab-Testing and FEM Simulation of Hole Deflector Performance for Radial Jet Drilling
,”
Energy Resour. Technol.
,
139
(
3
), pp.
1
10
.
20.
Silva
,
A. J.
,
Bryant
,
W. R.
,
Young
,
A. G.
,
Schultheiss
,
P.
,
Sykora
,
G.
,
Bean
,
D.
, and
Honganen
,
C.
,
1999
, “
Long Coring in Deep Water for Seabed Research, Geohazard Studies and Geotechnical Investigations
,”
Offshore Technology Conference
,
Houston, TX
,
May
.
21.
Hamilton
,
E. L.
,
1978
, “
Sound Velocity–Density Relations in sea-Floor Sediments and Rocks
,”
J. Acoust. Soc. Am.
,
63
(
2
), pp.
366
377
.
22.
Orsi
,
T. H.
, and
Dunn
,
D. A.
,
1990
, “
Sound Velocity and Related Physical Properties of Fine-Grained Abyssal Sediments From the Brazil Basin (South Atlantic Ocean)
,”
J. Acoust. Soc. Am.
,
88
(
3
), pp.
1536
1542
.
23.
Li
,
X.
,
Liu
,
B.
,
Liu
,
L.
,
Zheng
,
J.
,
Zhou
,
S.
, and
Zhou
,
Q.
,
2017
, “
Prediction for Potential Landslide Zones Using Seismic Amplitude in Liwan gas Field, Northern South China Sea
,”
J. Ocean Univ. China
,
16
(
6
), pp.
1035
1042
.
24.
Yan
,
B.
,
2017
,
Experimental Study on the Relations Between Acoustic Velocity with Physical and Mechanical Properties of Seabed Sediments
,
China University of Petroleum (Beijing)
,
China University of Petroleum-Beijing, Beijing, China
.
25.
Sun
,
Z.
,
Sun
,
L.
,
Li
,
G.
,
Guo
,
C.
,
Wang
,
J.
, and
Meng
,
X.
,
2018
, “
The Relationship Between the Acoustic Characteristics and Physical Properties of Deep-Sea Sediments
,”
Mar. Sci.
,
42
(
5
), pp.
12
22
.
26.
Yin
,
Q.
,
Yang
,
J.
,
Li
,
Z.
,
Huang
,
Y.
,
Luo
,
M.
,
Wang
,
B.
,
Tyagi
,
M.
,
Xu
,
G.
, and
Zhao
,
X.
,
2020
, “
A Field Case Study of Managed Pressure Drilling in Offshore Ultra High-Pressure High-Temperature Exploration Well in the South China Sea
,”
SPE Drill. Completion
,
35
(
4
), pp.
503
524
.
27.
Terzaghi
,
K. T.
,
1943
,
Theoretical Soil Mechanics
.
28.
Meng
,
Q. B.
,
2014
,
Study on Structure and Mechanical Properties and Constitutive Model of Very Weakly Cemented Rock
,
China University of Mining and Technology
,
Jiangsu, China
.
29.
Yu
,
B.
,
Yan
,
C.
,
Deng
,
J. G.
,
Liu
,
S.
,
Tan
,
Q.
, and
Xiao
,
K.
,
2011
, “
Evaluation and Application of Wellbore Stability in Deep Water
,”
Oil Drill. Prod. Technol.
,
33
(
6
), pp.
1
4
.
30.
Chen
,
Z.
,
Deng
,
J.
, and
Yu
,
B.
,
2019
, “
The Application of Modified Cambridge Model for the Wellbore Stability Analysis of Deepwater Shallow Sediments in Petroleum Drilling
,”
Mech. Eng.
,
41
(
3
), pp.
288
293
.
31.
Zhang
,
J.
,
Ai
,
C.
,
Zeng
,
B.
,
Li
,
Y.
, and
Zeng
,
J.
,
2017
, “
Study on Wellbore Stability of Shallow Sediments in Deepwater Drilling
,”
Open Pet. Eng. J.
,
10
(
1
), pp.
48
63
.
32.
Fjar
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
,
Elsevier
,
New York
.
33.
Matthews
,
W. R.
, and
Kelly
,
J.
,
1967
, “
How to Predict Formation Pressure and Fracture Gradient
,”
Oil Gas J.
,
65
(
8
), pp.
92
106
.
34.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.
35.
Biot
,
M. A.
,
1956
, “
Theory of Elastic Waves in a Fluid-Saturated Porous Solid. 1. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
36.
Gardner
,
G. H. F.
,
Gardner
,
L. W.
, and
Gregory
,
A. R.
,
1974
, “
Formation Velocity and Density; the Diagnostic Basics for Stratigraphic Traps
,”
Geophysics
,
39
(
6
), pp.
770
780
.
37.
Catuneanu
,
O.
,
2006
,
Principles of Sequence Stratigraphy
,
Elsevier
,
New York
.
38.
Li
,
L.
, and
Wang
,
Y.
,
2006
, “
Summary of the Application of Geostatistics
,”
Prog. Explor. Geophys.
,
29
(
3
), pp.
163
169
.
39.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South. Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
40.
Le
,
N. D.
, and
Zidek
,
J. V.
,
2006
,
Statistical Analysis of Environmental Space-Time Processes
,
Springer Science & Business Media
,
Berlin/Heidelberg/Dordrecht/New York
.
You do not currently have access to this content.