Abstract

Hydraulic fracturing becomes a necessary method to exploit shale gas, and the imbibition behavior of fracturing fluid can cause the pore structure variation. At present, the evaluation of this variation has less been investigated, and repeated imbibition was conducted to research the variation of pore structure. First imbibition was conducted as simulating the pore structure variation during hydraulic fracturing, and repeated imbibition was carried out to appraise this kind of variation. Two significant parameters were proposed to estimate the pore structure variation, which are the differential value of initial imbibition rate and the utmost differential value of normalized imbibed volume. Initial imbibition rate is closely related to pore connectivity, and normalized imbibed volume reflects the pore volume. Reservoirs with a higher value of these two parameters have advantage for developing its resources. Sichuan Longmaxi formation has the highest value in both parameters among all formations, which showed that Sichuan Longmaxi formation has advantage for exploiting its resources by hydraulic fracturing. Baojing Longmaxi formation, Sichuan Niutitang formation, and Cengong Niutitang formation have a lower value in both two parameters which indicated that these formations have less potential to develop its resources by hydraulic fracturing. These two parameters are mainly influenced by wettability and initial permeability, and have no obvious relationship with clay content. Overall, our research is conducive to screening the ideal formation for exploiting shale gas by hydraulic fracturing.

References

1.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
. 10.1115/1.4030832
2.
Zhang
,
L.
,
Zhou
,
F.
,
Mou
,
J.
,
Pournik
,
M.
,
Tao
,
S.
,
Wang
,
D.
, and
Wang
,
Y.
,
2019
, “
Large-Scale True Tri-Axial Fracturing Experimental Investigation on Diversion Behavior of Fiber Using 3D Printing Model of Rock Formation
,”
J. Pet. Sci. Eng.
,
181
, p.
106171
. 10.1016/j.petrol.2019.06.035
3.
Huang
,
H.
,
Li
,
R.
,
Jiang
,
Z.
,
Li
,
J.
, and
Chen
,
L.
,
2020
, “
Investigation of Variation in Shale Gas Adsorption Capacity With Burial Depth: Insights From the Adsorption Potential Theory
,”
J. Nat. Gas Sci. Eng.
,
73
, p.
103043
. 10.1016/j.jngse.2019.103043
4.
Bennion
,
D. B.
,
Thomas
,
F. B.
,
Bennion
,
D. W.
, and
Bietz
,
R. F.
,
1995
, “
Mechanisms of Formation Damage and Permeability Impairment Associated With the Drilling, Completion and Production of Low API Gravity Oil Reservoirs
, ”
SPE International Heavy Oil Symposium
,
Calgary, Alberta, Canada
,
June 19–21
,
Society of Petroleum Engineers
, pp.
689
707
.
5.
Ding
,
M.
, and
Kantzas
,
A.
,
2004
, “
Estimation of Residual Gas Saturation From Different Reservoirs
,”
Canadian International Petroleum Conference
,
Calgary, Alberta, Canada
,
June 8–10
,
Petroleum Society of Canada
, pp.
1
11
.
6.
Liang
,
X.
,
Zhou
,
F.
,
Liang
,
T.
,
Su
,
H.
,
Yuan
,
S.
, and
Li
,
Y.
,
2020
, “
Impacts of Pore Structure and Wettability on Distribution of Residual Fossil Hydrogen Energy After Imbibition
,”
Int. J. Hydrogen Energy
,
45
(
29
), pp.
14779
14789
. 10.1016/j.ijhydene.2020.03.208
7.
Shen
,
Y.
,
Ge
,
H.
,
Zhang
,
X.
,
Chang
,
L.
,
Liu
,
D.
, and
Liu
,
J.
,
2018
, “
Impact of Fracturing Liquid Absorption on the Production and Water-Block Unlocking for Shale Gas Reservoir
,”
Adv. Geo-Energy Res.
,
2
(
2
), pp.
163
172
. 10.26804/ager.2018.02.05
8.
Li
,
C.
,
Singh
,
H.
, and
Cai
,
J.
,
2019
, “
Spontaneous Imbibition in Shale: A Review of Recent Advances
,”
Capillarity
,
2
(
2
), pp.
17
32
. 10.26804/capi.2019.02.01
9.
Sharma
,
M.
, and
Agrawal
,
S.
,
2013
, “
Impact of Liquid Loading in Hydraulic Fractures on Well Productivity
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
,
Society of Petroleum Engineers
, pp.
1
16
.
10.
Chakraborty
,
N.
, and
Karpyn
,
Z. T.
,
2015
, “
Gas Permeability Evolution With Soaking Time in Ultra Tight Shales
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
,
Society of Petroleum Engineers
, p.
11
.
11.
Chakraborty
,
N.
,
Karpyn
,
Z. T.
,
Liu
,
S.
, and
Yoon
,
H.
,
2017
, “
Permeability Evolution of Shale During Spontaneous Imbibition
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
590
596
. 10.1016/j.jngse.2016.12.031
12.
Teklu
,
T. W.
,
Abass
,
H. H.
,
Hanashmooni
,
R.
,
Carratu
,
J. C.
, and
Ermila
,
M.
,
2017
, “
Experimental Investigation of Acid Imbibition on Matrix and Fractured Carbonate Rich Shales
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
706
725
. 10.1016/j.jngse.2017.06.001
13.
Yuan
,
W.
,
Li
,
X.
,
Pan
,
Z.
,
Connell
,
L. D.
,
Li
,
S.
, and
He
,
J.
,
2014
, “
Experimental Investigation of Interactions Between Water and a Lower Silurian Chinese Shale
,”
Energy Fuels
,
28
(
8
), pp.
4925
4933
. 10.1021/ef500915k
14.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
,
Li
,
L.
,
Tian
,
T.
, and
Chao
,
J.
,
2020
, “
The Effect of Clay-Swelling Induced Cracks on Shale Permeability During Liquid Imbibition and Diffusion
,”
J. Nat. Gas Sci. Eng.
,
83
, p.
103514
. 10.1016/j.jngse.2020.103514
15.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
,
Hu
,
Q.
,
Li
,
L.
,
Gao
,
Z.
,
Tian
,
T.
, and
Chao
,
J.
,
2020
, “
The Effect of Clay-Swelling Induced Cracks on Imbibition Behavior of Marine Shale Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
83
, p.
103525
. 10.1016/j.jngse.2020.103525
16.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
,
Ren
,
F.
, and
Ji
,
W.
,
2020
, “
A Novel Method for Monitoring the Imbibition Behavior of Clay-Rich Shale
,”
Energy Rep.
,
6
, pp.
1811
1818
. 10.1016/j.egyr.2020.07.005
17.
Dehghanpour
,
H.
,
Zubair
,
H.
,
Chhabra
,
A.
, and
Ullah
,
A.
,
2012
, “
Liquid Intake of Organic Shales
,”
Energy Fuels
,
26
(
9
), pp.
5750
5758
. 10.1021/ef3009794
18.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
. 10.1103/PhysRev.17.273
19.
Handy
,
L. L.
,
1960
, “
Determination of Effective Capillary Pressures for Porous Media From Imbibition Data
,”
Trans. AIME
,
219
(
01
), pp.
75
80
. 10.2118/1361-G
20.
Lam
,
C.-H.
, and
Horváth
,
V. K.
,
2000
, “
Pipe Network Model for Scaling of Dynamic Interfaces in Porous Media
,”
Phys. Rev. Lett.
,
85
(
6
), pp.
1238
1241
. 10.1103/PhysRevLett.85.1238
21.
Hu
,
Q.
,
Ewing
,
R. P.
, and
Dultz
,
S.
,
2012
, “
Low Pore Connectivity in Natural Rock
,”
J. Contam. Hydrol.
,
133
, pp.
76
83
. 10.1016/j.jconhyd.2012.03.006
22.
Al-Arfaj
,
M.
,
Al-Osail
,
M.
, and
Sultan
,
A.
,
2017
, “
Monitoring Imbibition of Water Into Shale Pore System: State of the Art
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Oct. 17–19
,
Society of Petroleum Engineers
, pp.
1
9
.
23.
Morrow
,
N. R.
, and
Mason
,
G.
,
2001
, “
Recovery of Oil by Spontaneous Imbibition
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
4
), pp.
321
337
. 10.1016/S1359-0294(01)00100-5
24.
Zhang
,
P.
, and
Austad
,
T.
,
2006
, “
Wettability and Oil Recovery From Carbonates: Effects of Temperature and Potential Determining Ions
,”
Colloids Surf., A
,
279
(
1–3
), pp.
179
187
. 10.1016/j.colsurfa.2006.01.009
25.
Mason
,
G.
,
Fischer
,
H.
,
Morrow
,
N. R.
,
Ruth
,
D. W.
, and
Wo
,
S.
,
2009
, “
Effect of Sample Shape on Counter-Current Spontaneous Imbibition Production vs Time Curves
,”
J. Pet. Sci. Eng.
,
66
(3–4
), pp.
83
97
. 10.1016/j.petrol.2008.12.035
26.
Gao
,
Z.
, and
Hu
,
Q.
,
2016
, “
Initial Water Saturation and Imbibition Fluid Affect Spontaneous Imbibition Into Barnett Shale Samples
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
541
551
. 10.1016/j.jngse.2016.07.038
27.
Mattax
,
C. C.
, and
Kyte
,
J. R.
,
1962
, “
Imbibition Oil Recovery From Fractured, Water-Drive Reservoir
,”
SPE J.
,
2
, pp.
177
184
.
28.
Hamon
,
G.
, and
Vidal
,
J.
,
1986
, “
Scaling-Up the Capillary Imbibition Process From Laboratory Experiments on Homogeneous and Heterogeneous Samples
,”
European Petroleum Conference
,
London, UK
,
Oct. 20–22
,
Society of Petroleum Engineers
, pp.
1
12
.
29.
Zhang
,
X.
,
Morrow
,
N. R.
, and
Ma
,
S.
,
1996
, “
Experimental Verification of a Modified Scaling Group for Spontaneous Imbibition
,”
SPE Reserv. Eng.
,
11
(
04
), pp.
280
285
. 10.2118/30762-PA
30.
Ma
,
S.
,
Morrow
,
N. R.
, and
Zhang
,
X.
,
1997
, “
Generalized Scaling of Spontaneous Imbibition Data for Strongly Water-Wet Systems
,”
J. Pet. Sci. Eng.
,
18
(
3–4
), pp.
165
178
. 10.1016/S0920-4105(97)00020-X
31.
Lyu
,
C.
,
Ning
,
Z.
,
Chen
,
M.
, and
Wang
,
Q.
,
2019
, “
Experimental Study of Boundary Condition Effects on Spontaneous Imbibition in Tight Sandstones
,”
Fuel
,
235
, pp.
374
383
. 10.1016/j.fuel.2018.07.119
32.
Makhanov
,
K.
,
Dehghanpour
,
H.
, and
Kuru
,
E.
,
2012
, “
An Experimental Study of Spontaneous Imbibition in Horn River Shales
,”
SPE Canadian Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Oct. 30–Nov. 1
,
Society of Petroleum Engineers
, pp.
1
14
.
33.
Gao
,
Z.
, and
Hu
,
Q.
,
2016
, “
Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations From Directional Spontaneous Imbibition
,”
AAPG Bull.
,
100
(
01
), pp.
101
114
. 10.1306/09141514095
34.
Roychaudhuri
,
B.
,
Tsotsis
,
T. T.
, and
Jessen
,
K.
,
2013
, “
An Experimental Investigation of Spontaneous Imbibition in Gas Shales
,”
J. Pet. Sci. Eng.
,
111
, pp.
87
97
. 10.1016/j.petrol.2013.10.002
35.
Zhou
,
Z.
,
Teklu
,
T.
,
Li
,
X. P.
, and
Hazim
,
A.
,
2018
, “
Experimental Study of the Osmotic Effect on Shale Matrix Imbibition Process in Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
49
, pp.
1
7
. 10.1016/j.jngse.2017.10.005
36.
Liu
,
J.
,
Sheng
,
J. J.
,
Wang
,
X.
,
Ge
,
H.
, and
Yao
,
E.
,
2019
, “
Experimental Study of Wettability Alteration and Spontaneous Imbibition in Chinese Shale Oil Reservoirs Using Anionic and Nonionic Surfactants
,”
J. Pet. Sci. Eng.
,
175
, pp.
624
633
. 10.1016/j.petrol.2019.01.003
37.
Zhou
,
Z.
,
Hoffman
,
B. T.
,
Bearinger
,
D.
, and
Li
,
X.
,
2014
, “
Experimental and Numerical Study on Spontaneous Imbibition of Fracturing Fluids in Shale Gas Formation
,”
SPE/CSUR Unconventional Resources Conference—Canada
,
Calgary, Alberta, Canada
,
Sept. 30–Oct. 2
,
Society of Petroleum Engineers
, pp.
1
13
.
38.
Wang
,
Q.
,
Lyu
,
C.
, and
Cole
,
D. R.
,
2019
, “
Effects of Hydration on Fractures and Shale Permeability Under Different Confining Pressures: An Experimental Study
,”
J. Pet. Sci. Eng.
,
176
, pp.
745
753
. 10.1016/j.petrol.2019.01.068
39.
Xu
,
L.
,
He
,
K.
, and
Nguyen
,
C.
,
2015
, “
Insights Into Surfactant Containing Fracturing Fluids Inducing Microcracks and Spontaneously Imbibing in Shale Rocks
,”
SPE/CSUR Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Oct. 20–22
,
Society of Petroleum Engineers
, pp.
1
7
.
40.
Liu
,
K.
, and
Sheng
,
J. J.
,
2019
, “
Experimental Study of the Effect of Stress Anisotropy on Fracture Propagation in Eagle Ford Shale Under Water Imbibition
,”
Eng. Geol.
,
249
, pp.
13
22
. 10.1016/j.enggeo.2018.12.023
41.
Fripiat
,
J. J.
,
Letellier
,
M.
,
Levitz
,
P.
,
Thomas John
,
M.
,
Fowden
,
L.
,
Barrer Richard
,
M.
, and
Tinker
,
P. B.
,
1984
, “
Interaction of Water With Clay Surfaces
.
Philos. Trans. R. Soc., A
,
311
, pp.
287
299
.
42.
Hayatdavoudi
,
A.
,
Boamah
,
M. A.
,
Tavnaei
,
A.
,
Sawant
,
K. G.
, and
Boukadi
,
F.
,
2015
, “
Post Frac Gas Production Through Shale Capillary Activation
,”
SPE Production and Operations Symposium
,
Oklahoma City, OK
,
Mar. 1–5
,
Society of Petroleum Engineers
, pp.
1
13
.
43.
Ji
,
W.
,
Hao
,
F.
,
Schulz
,
H.-M.
,
Song
,
Y.
, and
Tian
,
J.
,
2019
, “
The Architecture of Organic Matter and Its Pores in Highly Mature Gas Shales of the Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, South China
,”
AAPG Bul.
,
103
, pp.
2909
2942
. 10.1306/04101917386
44.
Sheng
,
G.
,
Zhao
,
H.
,
Su
,
Y.
,
Javadpour
,
F.
,
Wang
,
C.
,
Zhou
,
Y.
,
Liu
,
J.
, and
Wang
,
H.
,
2020
, “
An Analytical Model to Couple Gas Storage and Transport Capacity in Organic Matter With Noncircular Pores
,”
Fuel
,
268
, p.
117288
.
45.
Ji
,
W.
,
Song
,
Y.
,
Rui
,
Z.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geol.
,
174
, pp.
31
40
. 10.1016/j.coal.2017.03.005
46.
Ren
,
K.
,
2016
,
Water Absorbing Ability of Shale Gas Reservoir in Hunan and Its Impact on Deliverability (In Chinese Edition)
,
China University of Petroleum
,
Beijing
.
47.
Wang
,
L.
,
2020
, “
Clay Stabilization in Sandstone Reservoirs and the Perspectives for Shale Reservoirs
,”
Adv. Colloid Interface Sci.
,
276
, p.
102087
. 10.1016/j.cis.2019.102087
48.
Teklu
,
T. W.
,
Li
,
X.
,
Zhou
,
Z.
,
Alharthy
,
N.
,
Wang
,
L.
, and
Abass
,
H.
,
2018
, “
Low-Salinity Water and Surfactants for Hydraulic Fracturing and EOR of Shales
,”
J. Pet. Sci. Eng.
,
162
, pp.
367
377
. 10.1016/j.petrol.2017.12.057
You do not currently have access to this content.