Abstract

Elastic moduli contrast between the adjacent layers in a layered formation can lead to various problems in a conventional hydraulic fracturing job such as improper fracture height growth, limited penetration in a weaker layer only, and nonconductive fractures. In this study, the results of thermochemical fracturing experiment are presented. The hydraulic fracturing experiments presented in this study were carried out on four-layered very tight cement block samples. The results revealed that the novel fracturing technique can reduce the required breakdown pressure in a layered rock by 26%, from 1495 psi (reference breakdown pressure recorded in the conventional hydraulic fracturing technique) to 1107 psi (breakdown pressure recorded in the thermochemical fracturing). The posttreatment experimental analysis showed that the thermochemical fracturing approach resulted in deep and long fractures, passing through majority of the layers, while conventional hydraulic fracturing resulted in a thin fracture that affected only the top layer. A productivity analysis was also carried out which suggested that the fracturing with thermochemical fluids can raise the oil flowrate up to 76% when compared to a conventional hydraulic fracturing technique. Thermochemical fluids injection caused the creation of microfractures and reduces the linear elastic parameters of the rocks. The new technique is cost effective, nontoxic, and sustainable in terms of no environmental hazards.

References

1.
Zou
,
C. N.
,
Yang
,
Z.
,
Tao
,
S. Z.
,
Yuan
,
X. J.
,
Zhu
,
R. K.
,
Hou
,
L. H.
,
Wu
,
S. T.
,
Sun
,
L.
,
Zhang
,
G. S.
,
Bai
,
B.
,
Wang
,
L.
,
Gao
,
X. H.
, and
Pang
,
Z. L.
,
2013
, “
Continuous Hydrocarbon Accumulation Over a Large Area as a Distinguishing Characteristic of Unconventional Petroleum: The Ordos Basin, North-Central China
,”
Earth-Sci. Rev.
,
126
, pp.
358
369
. 10.1016/j.earscirev.2013.08.006
2.
Zou
,
C.
,
Zhang
,
G.
,
Yang
,
Z.
,
Tao
,
S.
,
Hou
,
L.
,
Zhu
,
R.
,
Yuan
,
X.
,
Ran
,
Q.
,
Li
,
D.
, and
Wang
,
Z.
,
2013
, “
Concepts, Characteristics, Potential and Technology of Unconventional Hydrocarbons: On Unconventional Petroleum Geology
,”
Pet. Explor. Dev.
,
40
(
4
), pp.
413
428
. 10.1016/S1876-3804(13)60053-1
3.
Pollastro
,
R. M.
,
Jarvie
,
D. M.
,
Hill
,
R. J.
, and
Adams
,
C. W.
,
2007
, “
Geologic Framework of the Mississippian Barnett Shale, Barnett-Paleozoic Total Petroleum System, Bend Arch-Fort Worth Basin, Texas
,”
Am. Assoc. Pet. Geol. Bull.
,
91
(
4
), pp.
405
436
. 10.1306/10300606008
4.
Pang
,
X. Q.
,
Huang
,
H. D.
,
Lin
,
C. S.
,
Zhu
,
X. M.
,
Liao
,
Y.
,
Chen
,
J. F.
,
Kang
,
Y. S.
,
Bai
,
G. P.
,
Wu
,
G. D.
,
Wu
,
X. S.
and
Yu
,
F. S.
,
2014
, “
Formation, Distribution, Exploration, and Resource/Reserve Assessment of Superimposed Continuous gas Field in Marsel Exploration Area, Kazakhstan
,”
Shiyou Xuebao/Acta Pet. Sin.
,
35
(
6
), pp.
1012
1056
. 10.7623/syxb201406002
5.
Lee
,
K. J.
,
2020
, “
Data-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123301
. 10.1115/1.4047309
6.
Schmitt
,
M.
,
Fernandes
,
C. P.
,
Wolf
,
F. G.
,
da Cunha Neto
,
J. A. B.
,
Rahner
,
C. P.
, and
dos Santos
,
V. S. S.
,
2015
, “
Characterization of Brazilian Tight gas Sandstones Relating Permeability and Angstrom-to Micron-Scale Pore Structures
,”
J. Nat. Gas Sci. Eng.
,
27
(Part 2), pp.
785
807
. 10.1016/j.jngse.2015.09.027
7.
Schmitt
,
M.
,
Fernandes
,
C. P.
,
Da Cunha Neto
,
J. A. B.
,
Rahner
,
C. P.
, and
Dos Santos
,
V. S. S.
,
2014
, “
Multi-Scale 3D X-ray Tomography, MICP and Low Field NMR for Tight Gas Sandstones Pore Structure Characterization
,”
76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy—Incorporating SPE EUROPEC
,
Amsterdam, The Netherlands
,
June 16
, pp.
3800
3804
.
8.
Yew
,
C. H.
,
1997
, “
Mechanics of Hydraulic Fracturing
,”
Mech. Hydraul. Fract.
,
9
(
6
), pp.
153
166
.
9.
Beugelsdijk
,
L. J. L.
,
De Pater
,
C. J.
, and
Sato
,
K.
,
2000
, “
Experimental Hydraulic Fracture Propagation in a Multi-Fractured Medium
,”
Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management
,
Yokohama, Japan
,
Apr. 25–26
, pp.
177
184
.
10.
Glorioso
,
J. C.
, and
Rattia
,
A.
,
2012
, “
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
,”
Society of Petroleum Engineers—SPE/EAGE European Unconventional Resources Conference and Exhibition
,
Vienna, Austria
,
Mar. 20–22
, pp.
748
785
.
11.
Zhang
,
Z.
,
Peng
,
S.
,
Ghassemi
,
A.
, and
Ge
,
X.
,
2016
, “
Simulation of Complex Hydraulic Fracture Generation in Reservoir Stimulation
,”
J. Pet. Sci. Eng.
,
146
, pp.
272
285
. 10.1016/j.petrol.2016.04.037
12.
Miller
,
K. K.
,
Prosceno
,
R. J.
,
Woodroof
,
R. A.
, and
Haney
,
R. L.
,
1998
, “
Permian Basin Field Tests of Propellant-Assisted Perforating
,”
SPE Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
Mar. 23–26
.
13.
Chu
,
T. Y.
,
Jacobson
,
R. D.
, and
Warpinski
,
N.
,
1987
, “
Geothermal Well Stimulated Using High Energy Gas Fracturing
,”
Twelfth Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Jan. 20–22
.
14.
Pearson
,
C. M.
,
Lynch
,
K. W.
,
Schmidt
,
J. H.
, and
McCaslin
,
N. F.
,
1988
, “
Improvement of Massive Hydraulic Fracture Treatments in the Cotton Valley Formation of East Texas
,”
SPE Gas Technology Symposium
,
Dallas, TX
,
June 13–15
, pp.
95
107
.
15.
Britt
,
L. K.
,
Hager
,
C. J.
, and
Thompson
,
J. W.
,
1994
, “
Hydraulic Fracturing in a Naturally Fractured Reservoir
,”
International Petroleum Conference and Exhibition of Mexico
,
Veracruz, Mexico
,
Oct. 10–13
, pp.
483
492
.
16.
Pine
,
R. J.
, and
Batchelor
,
A. S.
,
1984
, “
Downward Migration of Shearing in Jointed Rock During Hydraulic Injections
,”
Int. J. Rock Mech. Min. Sci.
,
21
(
5
), pp.
249
263
. 10.1016/0148-9062(84)92681-0
17.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Shehri
,
D.
, and
Murtaza
,
M.
,
2020
, “
An Environment Friendly Approach to Reduce the Breakdown Pressure of High Strength Unconventional Rocks by Cyclic Hydraulic Fracturing
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), pp.
1
26
. 10.1115/1.4045317
18.
Shi
,
X.
,
Zhuo
,
X.
,
Xiao
,
Y.
,
Guo
,
B.
,
Zhu
,
C.
, and
Li
,
J.
,
2020
, “
Wellbore Stability in Layered Rocks: A Comparative Study of Strength Criteria
,”
ASME J. Energy Resour. Technol.
,
142
(
6
). 10.1115/1.4045735
19.
Mendelsohn
,
D. A.
,
1984
, “
A Review of Hydraulic Fracture Modeling—II: 3D Modeling and Vertical Growth in Layered Rock
,”
ASME J. Energy Resour. Technol.
,
106
(
4
), pp.
543
553
. 10.1115/1.3231121
20.
Daneshy
,
A. A.
,
1978
, “
Hydraulic Fracture Propagation in Layered Formations
,”
Soc. Pet. Eng. J.
,
18
(
1
), pp.
33
41
. 10.2118/6088-PA
21.
Teufel
,
L. W.
, and
Clark
,
J. A.
,
1984
, “
Hydraulic Fracture Propagation in Layered Rock: Experimental Studies of Fracture Containment
,”
Soc. Pet. Eng. J.
,
24
(
1
), pp.
19
32
. 10.2118/9878-PA
22.
Nath
,
F.
,
Salvati
,
P. E.
,
Mokhtari
,
M.
,
Seibi
,
A.
, and
Hayatdavoudi
,
A.
,
2017
, “
Observation of Fracture Growth in Laminated Sandstone and Carbonate Rock Samples Under Brazilian Testing Conditions Using Digital Image Correlation Technique
,”
SPE Eastern Regional Meeting
,
Lexington, KY
,
Oct. 4–6
.
23.
AlTammar
,
M. J.
,
Agrawal
,
S.
, and
Sharma
,
M. M.
,
2019
, “
Effect of Geological Layer Properties on Hydraulic-Fracture Initiation and Propagation: An Experimental Study
,”
SPE J.
,
24
(
2
), pp.
757
794
. 10.2118/184871-PA
24.
Douma
,
L. A. N. R.
,
Regelink
,
J. A.
,
Bertotti
,
G.
,
Boersma
,
Q. D.
, and
Barnhoorn
,
A.
,
2019
, “
The Mechanical Contrast Between Layers Controls Fracture Containment in Layered Rocks
,”
J. Struct. Geol.
,
127
, p.
103856
. 10.1016/j.jsg.2019.06.015
25.
Zhao
,
Z.
,
Li
,
X.
,
Wang
,
Y.
,
Zheng
,
B.
, and
Zhang
,
B.
,
2016
, “
A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation
,”
Energies
,
9
(
7
), p.
556
. 10.3390/en9070556
26.
van Eekelen
,
H. A. M.
,
1982
, “
Hydraulic Fracture Geometry: Fracture Containment in Layered Formations
,”
Soc. Pet. Eng. J.
,
22
(
3
), pp.
341
349
. 10.2118/9261-PA
27.
Smith
,
M. B.
,
Bale
,
A. B.
,
Britt
,
L. K.
,
Klein
,
H. H.
,
Siebrits
,
E.
, and
Dang
,
X.
,
2001
, “
Layered Modulus Effects on Fracture Propagation, Proppant Placement, and Fracture Modeling
,”
Proceedings—SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 3
, pp.
2919
2932
.
28.
De Pater
,
C. J.
, and
Dong
,
Y.
,
2009
, “
Fracture Containment in Soft Sands by Permeability or Strength Contrasts
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Jan. 19–21
, pp.
685
693
.
29.
Khanna
,
A.
, and
Kotousov
,
A.
,
2016
, “
Controlling the Height of Multiple Hydraulic Fractures in Layered Media
,”
SPE J.
,
21
(
1
), pp.
256
263
. 10.2118/176017-PA
30.
Yue
,
K.
,
Olson
,
J. E.
, and
Schultz
,
R. A.
,
2018
, “
Layered Modulus Effect on Fracture Modeling and Height Containment
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference 2018, URTC 2018
,
Houston, TX
,
July 23–25
.
31.
Miskimins
,
J. L.
, and
Barree
,
R. D.
,
2003
, “
Modeling of Hydraulic Fracture Height Containment in Laminated Sand and Shale Sequences
,”
Proceedings—SPE Production Operations Symposium
,
Oklahoma City, OK
,
Mar. 23–26
, pp.
569
581
.
32.
Garcia
,
X.
,
Nagel
,
N.
,
Zhang
,
F.
,
Sanchez-Nagel
,
M.
, and
Lee
,
B.
,
2013
, “
Revisiting Vertical Hydraulic Fracture Propagation Through Layered Formations—A Numerical Evaluation
,”
47th US Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 23–26
, Vol.
4
, pp.
2501
2511
.
33.
Abbas
,
S.
,
Gordeliy
,
E.
,
Peirce
,
A.
,
Lecampion
,
B.
,
Chuprakov
,
D.
, and
Prioul
,
R.
,
2014
, “
Limited Height Growth and Reduced Opening of Hydraulic Fractures Due to Fracture Offsets: An XFEM Application
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
, pp.
587
599
.
34.
Zhang
,
X.
,
Jeffrey
,
R. G.
, and
Thiercelin
,
M.
,
2007
, “
Deflection and Propagation of Fluid-Driven Fractures at Frictional Bedding Interfaces: A Numerical Investigation
,”
J. Struct. Geol.
,
29
(
3
), pp.
396
410
. 10.1016/j.jsg.2006.09.013
35.
Li
,
Q.
,
Xing
,
H.
,
Liu
,
J.
, and
Liu
,
X.
,
2015
, “
A Review on Hydraulic Fracturing of Unconventional Reservoir
,”
Petroleum
,
1
(
1
), pp.
8
15
. 10.1016/j.petlm.2015.03.008
36.
Waters
,
G. A.
,
Lewis
,
R. E.
, and
Bentley
,
D. C.
,
2012
, “
The Effect of Mechanical Properties Anisotropy in the Generation of Hydraulic Fractures in Organic Shales
,”
Society of Petroleum Engineers—SPE Middle East Unconventional Gas Conference and Exhibition 2012, UGAS—Unlocking Unconventional Gas: New Energy in the Middle East
,
Denver, CO
,
Oct. 30–Nov. 2
, pp.
51
75
.
37.
Daneshy
,
A. A.
,
2009
, “
Factors Controlling the Vertical Growth of Hydraulic Fractures
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Jan. 19–21
, pp.
63
73
.
38.
Wang
,
T.
,
Hu
,
W.
,
Elsworth
,
D.
,
Zhou
,
W.
,
Zhou
,
W.
,
Zhao
,
X.
, and
Zhao
,
L.
,
2017
, “
The Effect of Natural Fractures on Hydraulic Fracturing Propagation in Coal Seams
,”
J. Pet. Sci. Eng.
,
150
, pp.
180
190
. 10.1016/j.petrol.2016.12.009
39.
Shin
,
D. H.
, and
Sharma
,
M. M.
,
2014
, “
Factors Controlling the Simultaneous Propagation of Multiple Competing Fractures in a Horizontal Well
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
, pp.
269
288
.
40.
Hou
,
B.
,
Chang
,
Z.
,
Fu
,
W.
,
Muhadasi
,
Y.
, and
Chen
,
M.
,
2019
, “
Fracture Initiation and Propagation in a Deep Shale Gas Reservoir Subject to an Alternating-Fluid-Injection Hydraulic-Fracturing Treatment
,”
SPE J.
,
24
(
4
), pp.
1839
1855
. 10.2118/195571-PA
41.
Wan
,
L.
,
Hou
,
B.
,
Meng
,
H.
,
Chang
,
Z.
,
Muhadasi
,
Y.
, and
Chen
,
M.
,
2019
, “
Experimental Investigation of Fracture Initiation Position and Fluid Viscosity Effect in Multi-Layered Coal Strata
,”
J. Pet. Sci. Eng.
,
182
, p.
106310
. 10.1016/j.petrol.2019.106310
42.
Wan
,
L.
,
Hou
,
B.
,
Tan
,
P.
,
Chang
,
Z.
, and
Muhadasi
,
Y.
,
2019
, “
Observing the Effects of Transition Zone Properties on Fracture Vertical Propagation Behavior for Coal Measure Strata
,”
J. Struct. Geol.
,
126
, pp.
69
82
. 10.1016/j.jsg.2019.05.005
43.
Wan
,
L.
,
Chen
,
M.
,
Hou
,
B.
,
Kao
,
J.
,
Zhang
,
K.
, and
Fu
,
W.
,
2018
, “
Experimental Investigation of the Effect of Natural Fracture Size on Hydraulic Fracture Propagation in 3D
,”
J. Struct. Geol.
,
116
, pp.
1
11
. 10.1016/j.jsg.2018.08.006
44.
Polikar
,
M.
,
2011
, “
Unconventional Resources
,”
JPT, J. Pet. Technol.
,
63
(
7
), p.
98
. 10.2118/0711-0098-JPT
45.
Polikar
,
M.
,
2009
, “
Technology Focus: Unconventional Resources (July 2009)
,”
JPT J. Pet. Technol.
,
61
(
7
), pp.
58
58
. 10.2118/0709-0058-JPT
46.
Etherington
,
J. R.
, and
McDonald
,
I. R.
,
2005
, “
Is Bitumen a Petroleum Reserve?
,”
SPE Hydrocarbon Economics and Evaluation Symposium
,
Houston, TX
,
Sept. 26–29
, pp.
15
21
.
47.
Xiao
,
X.
, and
Huang
,
J.
,
2018
, “
Dynamic Connectedness of International Crude Oil Prices: The Diebold-Yilmaz Approach
,”
Sustainability
,
10
(
9
), p.
3298
. 10.3390/su10093298
48.
Kim
,
J. H.
, and
Lee
,
Y. G.
,
2018
, “
Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources
,”
Sustainability
,
10
(
9
), p.
3322
. 10.3390/su10093322
49.
Toscano
,
A.
,
Bilotti
,
F.
,
Asdrubali
,
F.
,
Guattari
,
C.
,
Evangelisti
,
L.
, and
Basilicata
,
C.
,
2016
, “
Recent Trends in the World Gas Market: Economical, Geopolitical and Environmental Aspects
,”
Sustainability
,
8
(
2
), p.
154
. 10.3390/su8020154
50.
Nguyen
,
D. A.
,
Iwaniw
,
M. A.
, and
Fogler
,
H. S.
,
2003
, “
Kinetics and Mechanism of the Reaction Between Ammonium and Nitrite Ions: Experimental and Theoretical Studies
,”
Chem. Eng. Sci.
,
58
(
19
), pp.
4351
4362
. 10.1016/S0009-2509(03)00317-8
51.
Amin
,
R. A. M.
,
Halim
,
N. H.
,
Rosli
,
K. A.
,
Ali
,
M. I.
,
Winnie
,
H. W. N.
, and
Mohamad
,
M. H.
,
2007
, “
Production Profile of Wells Before and After Treatment Using Novel Thermochemical Technique
,”
SPE—European Formation Damage Conference, Proceedings
,
Scheveningen, The Netherlands
,
May 30–June 1
,
EFDC
, Vol.
1
, pp.
461
469
.
52.
Wang
,
F.
,
Chen
,
H.
,
Alzobaidi
,
S.
, and
Li
,
Z.
,
2018
, “
Application and Mechanisms of Self-Generated Heat Foam for Enhanced Oil Recovery
,”
Energy Fuels
,
32
(
9
), pp.
9093
9105
. 10.1021/acs.energyfuels.8b01763
53.
Mahmoud
,
M.
,
2019
, “
Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluids
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
10
), p.
102905
. 10.1115/1.4043612
54.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Nakhli
,
A.
, and
BaTaweel
,
M.
,
2020
, “
An Experimental Study to Reduce the Breakdown Pressure of the Unconventional Carbonate Rock by Cyclic Injection of Thermochemical Fluids
,”
J. Pet. Sci. Eng.
,
187
, p.
106859
. 10.1016/j.petrol.2019.106859
55.
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Al-Nakhli
,
A.
, and
Bataweel
,
M.
,
2019
, “
An Experimental Study to Reduce the Fracture Pressure of High Strength Rocks Using a Novel Thermochemical Fracturing Approach
,”
Geofluids
,
2019
, pp.
1
16
. 10.1155/2019/1904565
56.
Al-Nakhli
,
A. R.
,
Abass
,
H.
,
Al-Ajwad
,
H. A.
,
KwaK
,
H. T.
,
Al-Harith
,
A.
, and
Al-Otaibi
,
A.
,
2013
, “
Unconventional Gas Stimulation by Creating Synthetic Sweetspot
,”
Society of Petroleum Engineers—SPE Middle East Unconventional Gas Conference and Exhibition 2013, UGAS 2013—Unconventional and Tight Gas: Bridging the Gaps for Sustainable Economic Development
,
Muscat, Oman
,
Jan. 28–30
, pp.
459
467
.
57.
Alade
,
O. S.
,
Mahmoud
,
M.
,
Hassan
,
A.
,
Al-Shehri
,
D.
,
Al-Nakhli
,
A.
, and
Bataweel
,
M.
,
2019
, “
Evaluation of Kinetics and Energetics of Thermochemical Fluids for Enhanced Recovery of Heavy Oil and Liquid Condensate
,”
Energy Fuels
,
33
(
6
), pp.
5538
5543
. 10.1021/acs.energyfuels.9b00681
58.
Rocha
,
N. O.
,
Khalil
,
C. N.
,
Leite
,
L. F.
, and
Goja
,
A. M.
,
2009
, “
Thermochemical Process to Remove Sludge From Storage Tanks
,”
SPE Proj. Facil. Constr.
,
4
(
3
), pp.
97
102
. 10.2118/105765-PA
59.
ASTM
,
2018
, “
Standard Specification for Materials and Manufacture of Articulating Concrete Block
,”
Test
,
i
(Reapproved 2010), pp.
2
5
.
60.
Akono
,
A. T.
, and
Ulm
,
F. J.
,
2011
, “
Scratch Test Model for the Determination of Fracture Toughness
,”
Eng. Fract. Mech.
,
78
(
2
), pp.
334
342
. 10.1016/j.engfracmech.2010.09.017
61.
Fjar Erling
,
R. M.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
,
Elsevier Science
,
Amsterdam, The Netherlands
62.
Arrhenius
,
S.
,
1889
, “
Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
,”
Z. Phys. Chem.
,
4U
(
1
). 10.1515/zpch-1889-0408
63.
Ahmed
,
T.
,
2010
, “Oil Well Performance,”
Reservoir Engineering Handbook
,
Elsevier Science, Gulf Professional Publishing
, pp.
484
545
.
64.
Ahmed
,
T.
, and
Nathan Meehan
,
D.
,
2012
,
Advanced Reservoir Management and Engineering
,
Elsevier Science, Gulf Professional Publishing
.
You do not currently have access to this content.