Abstract

Unconventional hydrocarbon resources mostly found in highly stressed, overpressured, and deep formations, where the rock strength and integrity are very high. When fracturing these kinds of rocks, the hydraulic fracturing operation becomes much more challenging and difficult and in some cases reaches to the maximum pumping capacity limits without generating any fracture. This reduces the operational gap to optimally place the hydraulic fractures. Current stimulation methods to reduce the fracture pressures involvement with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals. In this study, a new environment friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new method incorporates the injection of chemical-free fracturing fluid in a series of cycles with a progressive increase of the pressurization rate in each cycle. This study is carried out on different cement blocks with varying petrophysical and mechanical properties to simulate real rock types. The results showed that the new method of cyclic fracturing can reduce the breakdown pressure to 24.6% in ultra-tight rocks, 19% in tight rocks, and 14.8% in medium- to low-permeability rocks. This reduction in breakdown pressure helped to overcome the operational challenges in the field and makes the fracturing operation much greener.

References

1.
Chen
,
W.
,
Di
,
Q.
,
Ye
,
F.
,
Zhang
,
J.
, and
Wang
,
W.
,
2017
, “
Flowing Bottomhole Pressure Prediction for Gas Wells Based on Support Vector Machine and Random Samples Selection
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18333
18342
. 10.1016/j.ijhydene.2017.04.134
2.
Hou
,
X.
,
Lu
,
Y.
,
Fang
,
B.
,
Qiu
,
X.
, and
Cui
,
W.
,
2013
, “
Waterless Fracturing Fluid With Low Carbon Hydrocarbon as Base Fluid for Unconventional Reservoirs
,”
Pet. Explor. Dev.
,
40
(
5
), pp.
646
650
. 10.1016/S1876-3804(13)60085-3
3.
Shiqian
,
X.
,
Yuyao
,
L.
,
Yu
,
Z.
,
Sen
,
W.
, and
Qihong
,
F.
,
2020
, “
A History Matching Framework to Characterize Fracture Network and Reservoir Properties in Tight Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042902
. 10.1115/1.4044767
4.
Kleit
,
A.
,
Leelachutipong
,
E.
, and
Wang
,
J. Y.
,
2020
, “
Estimating the Value of a Unitization law for Shale Gas Development
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042906
. 10.1115/1.4045167
5.
Liu
,
H.
, and
Li
,
J.
,
2018
, “
The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis
,”
Sustainability
,
10
(
3
), p.
697
. 10.3390/su10030697
6.
Chan
,
P. B.
,
Etherington
,
J. R.
, and
Aguilera
,
R.
,
2010
, “
A Process to Evaluate Unconventional Resources
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
.
7.
Hubbert
,
M. K.
, and
Willis
,
D. G.
,
1957
, “
Mechanics of Hydraulic Fracturing
,”
ASME J. Pet. Technol.
,
9
(
6
), pp.
153
166
.
8.
Beugelsdijk
,
L. J. L.
,
de Pater
,
C. J.
, and
Sato
,
K.
,
2000
, “
Experimental Hydraulic Fracture Propagation in a Multi-Fractured Medium
,”
SPE Asia Pacific Conference on Integrated Modelling for Asset Management.
,
Yokohama, Japan
,
Apr. 25–26
.
9.
Glorioso
,
J. C.
, and
Rattia
,
A. J.
,
2012
, “
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
,”
SPE/EAGE European Unconventional Resources Conference and Exhibition
,
Vienna, Austria
,
Mar. 20–22
.
10.
Zhang
,
Z.
,
Peng
,
S.
,
Ghassemi
,
A.
, and
Ge
,
X.
,
2016
, “
Simulation of Complex Hydraulic Fracture Generation in Reservoir Stimulation
,”
ASME J. Pet. Sci. Eng.
,
146
, pp.
272
285
. 10.1016/j.petrol.2016.04.037
11.
Miller
,
K. K.
,
Prosceno
,
R. J.
,
Woodroof
,
R. A.
, and
Haney
,
R. L.
,
1998
, “
Permian Basin Field Tests of Propellant-Assisted Perforating
,”
SPE Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
Mar. 23–26
.
12.
Chu
,
T. Y.
,
Jacobson
,
R. D.
, and
Warpiniski
,
N.
,
1987
, “
Geothermal Well Stimulation Using High Energy Gas Fracturing
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 4–7, 1981
.
13.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
. 10.1115/1.4030111
14.
Pearson
,
C. M.
,
Lynch
,
K. W.
,
Schmidt
,
J. H.
, and
McCaslin
,
N. F.
,
1988
, “
Improvement of Massive Hydraulic Fracture Treatments in the Cotton Valley Formation of East Texas
,”
SPE Gas Technology Symposium.
,
Dallas, TX
,
June 13–15
.
15.
Britt
,
L. K.
,
Hager
,
C. J.
, and
Thompson
,
J. W.
,
1994
, “
Hydraulic Fracturing in a Naturally Fractured Reservoir
,”
International Petroleum Conference and Exhibition of Mexico
,
Veracruz, Mexico
,
Oct. 10–13
,
Society of Petroleum Engineers
.
16.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.-C.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
. 10.1115/1.1791651
17.
Gomaa
,
A. M.
,
Qu
,
Q.
,
Nelson
,
S.
, and
Maharidge
,
R.
,
2014
, “
New Insights Into Shale Fracturing Treatment Design
,”
SPE/EAGE European Unconventional Resources Conference and Exhibition
,
Vienna, Austria
,
Feb. 25–27
.
18.
Wu
,
X.
,
Xia
,
J.
,
Guan
,
B.
,
Yan
,
X.
,
Zou
,
L.
,
Liu
,
P.
,
Yang
,
L.
,
Hong
,
S.
, and
Hu
,
S.
,
2019
, “
Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China
,”
Sustainability
,
11
(
3
), p.
940
. 10.3390/su11030940
19.
Barati
,
R.
, and
Liang
,
J.-T.
,
2014
, “
A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells
,”
J. Appl. Polym. Sci.
,
131
(
16
), p.
40735
. 10.1002/app.40735
20.
Rahman
,
M. M.
, and
Rahman
,
M. K.
,
2012
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
013101
. 10.1115/1.4005239
21.
Li
,
Q.
,
Xing
,
H.
,
Liu
,
J.
, and
Liu
,
X.
,
2015
, “
A Review on Hydraulic Fracturing of Unconventional Reservoir
,”
Petroleum
,
1
(
1
), pp.
8
15
. 10.1016/j.petlm.2015.03.008
22.
Lhomme
,
T. P.
,
de Pater
,
C. J.
, and
Helfferich
,
P. H.
,
2002
, “
Experimental Study of Hydraulic Fracture Initiation in Colton Sandstone
,”
SPE/ISRM Rock Mechanics Conference
,
Irving, TX
,
Oct. 20–23
.
23.
Lamont
,
N.
, and
Jessen
,
F. W.
,
1963
, “
The Effects of Existing Fractures in Rocks on the Extension of Hydraulic Fractures
,”
ASME J. Pet. Technol.
,
15
(
2
), pp.
203
209
. 10.2118/419-PA
24.
Blanton
,
T. L.
,
1982
, “
An Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures
,”
SPE Unconventional Gas Recovery Symposium
,
Pittsburgh, PA
,
May 16–18
.
25.
Bennour
,
Z.
,
Ishida
,
T.
,
Nagaya
,
Y.
,
Chen
,
Y.
,
Nara
,
Y.
,
Chen
,
Q.
,
Sekine
,
K.
, and
Nagano
,
Y.
,
2015
, “
Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide
,”
Rock Mech. Rock Eng.
,
48
(
4
), pp.
1463
1473
. 10.1007/s00603-015-0774-2
26.
Fan
,
T.
, and
Zhang
,
G.
,
2014
, “
Laboratory Investigation of Hydraulic Fracture Networks in Formations With Continuous Orthogonal Fractures
,”
Energy
,
74
, pp.
164
173
. 10.1016/j.energy.2014.05.037
27.
Guo
,
T.
,
Zhang
,
S.
,
Qu
,
Z.
,
Zhou
,
T.
,
Xiao
,
Y.
, and
Gao
,
J.
,
2014
, “
Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume
,”
Fuel
,
128
, pp.
373
380
. 10.1016/j.fuel.2014.03.029
28.
Liu
,
E.
,
2005
, “
Effects of Fracture Aperture and Roughness on Hydraulic and Mechanical Properties of Rocks: Implication of Seismic Characterization of Fractured Reservoirs
,”
ASME J. Geophys. Eng.
,
2
(
1
), pp.
38
47
. 10.1088/1742-2132/2/1/006
29.
Chuprakov
,
D.
,
Melchaeva
,
O.
, and
Prioul
,
R.
,
2014
, “
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction With Discontinuities
,”
Rock Mech. Rock Eng.
,
47
(
5
), pp.
1625
1640
. 10.1007/s00603-014-0596-7
30.
Liu
,
Z.
,
Chen
,
M.
, and
Zhang
,
G.
,
2014
, “
Analysis of the Influence of a Natural Fracture Network on Hydraulic Fracture Propagation in Carbonate Formations
,”
Rock Mech. Rock Eng.
,
47
(
2
), pp.
575
587
. 10.1007/s00603-013-0414-7
31.
Dehghan
,
A. N.
,
Goshtasbi
,
K.
,
Ahangari
,
K.
, and
Jin
,
Y.
,
2015
, “
Experimental Investigation of Hydraulic Fracture Propagation in Fractured Blocks
,”
Bull. Eng. Geol. Environ.
,
74
(
3
), pp.
887
895
. 10.1007/s10064-014-0665-x
32.
Zhou
,
J.
,
Chen
,
M.
,
Jin
,
Y.
, and
Zhang
,
G.
,
2008
, “
Analysis of Fracture Propagation Behavior and Fracture Geometry Using a Tri-Axial Fracturing System in Naturally Fractured Reservoirs
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
7
), pp.
1143
1152
. 10.1016/j.ijrmms.2008.01.001
33.
Liu
H.
,
Wang
F.
,
Zhang
J.
,
Meng
S.
, and
Duan
Y.
,
2014
, “
Fracturing With Carbon Dioxide: Application Status and Development Trend
,”
Pet. Explor. Dev.
,
41
(
4
), pp.
513
519
. 10.1016/S1876-3804(14)60060-4
34.
Rubin
,
M. B.
,
1983
, “
Experimental Study of Hydraulic Fracturing in an Impermeable Material
,”
ASME J. Energy Resour. Technol.
,
105
(
2
), pp.
116
124
. 10.1115/1.3230889
35.
Lyu
,
Q.
,
Ranjith
,
P.
,
Long
,
X.
, and
Ji
,
B.
,
2016
, “
Experimental Investigation of Mechanical Properties of Black Shales After CO2-Water-Rock Interaction
,”
Materials (Basel)
,
9
(
8
), p.
663
. 10.3390/ma9080663
36.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
,
1961
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
,
13
(
1
), pp.
9
14
.
37.
Patel
,
S. M.
,
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2017
, “
Laboratory Studies of Hydraulic Fracturing by Cyclic Injection
,”
Int. J. Rock Mech. Min. Sci.
,
95
, pp.
8
15
. 10.1016/j.ijrmms.2017.03.008
38.
Salim
,
N. A. M.
,
Mohamed
,
Z.
, and
Berhan
,
M. N.
,
2016
, “
The Effect of Cyclic Stress on the Strain and Microstructure of Weathered Granite
,”
InCIEC 2015: Proceedings of the International Civil and Infrastructure Engineering Conference
,
Singapore
, 2015,
Springer
,
Singapore
, pp.
287
299
.
39.
Hofmann
,
H.
,
Zimmermann
,
G.
,
Farkas
,
M.
,
Huenges
,
E.
,
Zang
,
A.
,
Leonhardt
,
M.
,
Kwiatek
,
G.
,
Martinez-Garzon
,
P.
,
Bohnhoff
,
M.
,
Min
,
K.-B.
,
Fokker
,
P.
,
Westaway
,
R.
,
Bethmann
,
F.
,
Meier
,
P.
,
Yoon
,
K. S.
,
Choi
,
J. W.
,
Lee
,
T. J.
, and
Kim
,
K. Y.
,
2019
, “
First Field Application of Cyclic Soft Stimulation at the Pohang Enhanced Geothermal System Site in Korea
,”
Geophys. J. Int.
,
217
(
2
), pp.
926
949
. 10.1093/gji/ggz058
40.
Sakhaee-Pour
,
A.
, and
Agrawal
,
A.
,
2018
, “
Predicting Breakdown Pressure and Breakdown Cycle in Cyclic Fracturing
,”
SPE Prod. Oper.
,
33
(
4
), pp.
761
769
. 10.2118/191137-PA
41.
Agrawal
,
A.
, and
Sakhaee-Pour
,
A.
,
2017
, “
Effects of Cyclic Fracturing on Acoustic Events and Breakdown Pressure
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Austin, TX
,
July 24–26
.
42.
Barreda
,
D.
,
Shahri
,
M. P.
,
Wagner
,
R.
, and
King
,
G.
,
2018
, “
Impact of Cyclic Pressure Loading on Well Integrity in Multi-Stage Hydraulic Fracturing
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Houston, TX
,
July 23–25
.
43.
Zang
,
A.
,
Yoon
,
J. S.
,
Stephansson
,
O.
, and
Heidbach
,
O.
,
2013
, “
Fatigue Hydraulic Fracturing by Cyclic Reservoir Treatment Enhances Permeability and Reduces Induced Seismicity
,”
Geophys. J. Int.
,
195
(
2
), pp.
1282
1287
. 10.1093/gji/ggt301
44.
Kiel
,
O. M.
,
1977
,
The Kiel Process Reservoir Stimulation by Dendritic Fracturing
,
Society of Petroleum Engineers of AIME
,
PA
.
45.
Mighani
,
S.
,
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2016
, “
Observations of Tensile Fracturing of Anisotropic Rocks
,”
SPE J.
,
21
(
4
), pp.
1289
1301
. 10.2118/2014-1934272-PA
46.
Zang
,
A.
,
Stephansson
,
O.
, and
Zimmermann
,
G.
,
2017
, “
Keynote: Fatigue Hydraulic Fracturing
,”
Procedia Eng.
,
191
, pp.
1126
1134
. 10.1016/j.proeng.2017.05.287
47.
Hofmann
,
H.
,
Zimmermann
,
G.
,
Zang
,
A.
,
Yoon
,
J. S.
,
Stephansson
,
O.
,
Kim
,
K. Y.
,
Zhuang
,
L.
,
Diaz
,
M.
, and
Min
,
K.
,
2018
, “
Comparison of Cyclic and Constant Fluid Injection in Granitic Rock at Different Scales
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
,
Seattle, WA
,
June 17–20
,
American Rock Mechanics Association
,
Alexandria, VA
.
48.
Erarslan
,
N.
, and
Williams
,
D. J.
,
2012
, “
Mechanism of Rock Fatigue Damage in Terms of Fracturing Modes
,”
Int. J. Fatigue
,
43
, pp.
76
89
. 10.1016/j.ijfatigue.2012.02.008
49.
Elliott
,
E. G.
,
Ma
,
X.
,
Leaderer
,
B. P.
,
McKay
,
L. A.
,
Pedersen
,
C. J.
,
Wang
,
C.
,
Gerber
,
C. J.
,
Wright
,
T. J.
,
Sumner
,
A. J.
,
Brennan
,
M.
,
Silva
,
G. S.
,
Warren
,
J. L.
,
Plata
,
D. L.
, and
Deziel
,
N. C.
,
2018
, “
A Community-Based Evaluation of Proximity to Unconventional Oil and Gas Wells, Drinking Water Contaminants, and Health Symptoms in Ohio
,”
Environ. Res.
,
167
, pp.
550
557
. 10.1016/j.envres.2018.08.022
50.
Regli
,
S.
,
Chen
,
J.
,
Messner
,
M.
,
Elovitz
,
M. S.
,
Letkiewicz
,
F. J.
,
Pegram
,
R. A.
,
Pepping
,
T. J.
,
Richardson
,
S. D.
, and
Wright
,
J. M.
,
2015
, “
Estimating Potential Increased Bladder Cancer Risk due to Increased Bromide Concentrations in Sources of Disinfected Drinking Waters
,”
Environ. Sci. Technol.
,
49
(
22
), pp.
13094
13102
. 10.1021/acs.est.5b03547
51.
Kahrilas
,
G. A.
,
Blotevogel
,
J.
,
Stewart
,
P. S.
, and
Borch
,
T.
,
2015
, “
Biocides in Hydraulic Fracturing Fluids: A Critical Review of Their Usage, Mobility, Degradation, and Toxicity
,”
Environ. Sci. Technol.
,
49
(
1
), pp.
16
32
. 10.1021/es503724k
52.
Jackson
,
R. B.
,
Lowry
,
E. R.
,
Pickle
,
A.
,
Kang
,
M.
,
DiGiulio
,
D.
, and
Zhao
,
K.
,
2015
, “
The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States
,”
Environ. Sci. Technol.
,
49
(
15
), pp.
8969
8976
. 10.1021/acs.est.5b01228
53.
Lester
,
Y.
,
Yacob
,
T.
,
Morrissey
,
I.
, and
Linden
,
K. G.
,
2014
, “
Can We Treat Hydraulic Fracturing Flowback With a Conventional Biological Process? The Case of Guar Gum
,”
Environ. Sci. Technol. Lett.
,
1
(
1
), pp.
133
136
. 10.1021/ez4000115
54.
Struchtemeyer
,
C. G.
,
Morrison
,
M. D.
, and
Elshahed
,
M. S.
,
2012
, “
A Critical Assessment of the Efficacy of Biocides Used During the Hydraulic Fracturing Process in Shale Natural Gas Wells
,”
Int. Biodeterior. Biodegradation
,
71
, pp.
15
21
. 10.1016/j.ibiod.2012.01.013
55.
Casey
,
J. A.
,
Goin
,
D. E.
,
Rudolph
,
K. E.
,
Schwartz
,
B. S.
,
Mercer
,
D.
,
Elser
,
H.
,
Eisen
,
E. A.
, and
Morello-Frosch
,
R.
,
2019
, “
Unconventional Natural Gas Development and Adverse Birth Outcomes in Pennsylvania: The Potential Mediating Role of Antenatal Anxiety and Depression
,”
Environ. Res.
,
177
, p.
108598
. 10.1016/j.envres.2019.108598
56.
Folkerts
,
E. J.
,
Blewett
,
T. A.
,
He
,
Y.
, and
Goss
,
G. G.
,
2017
, “
Cardio-Respirometry Disruption in Zebrafish (Danio Rerio) Embryos Exposed to Hydraulic Fracturing Flowback and Produced Water
,”
Environ. Pollut.
,
231
, pp.
1477
1487
. 10.1016/j.envpol.2017.09.011
57.
Kassotis
,
C. D.
,
Tillitt
,
D. E.
,
Davis
,
J. W.
,
Hormann
,
A. M.
, and
Nagel
,
S. C.
,
2014
, “
Estrogen and Androgen Receptor Activities of Hydraulic Fracturing Chemicals and Surface and Ground Water in a Drilling-Dense Region
,”
Endocrinology
,
155
(
3
), pp.
897
907
. 10.1210/en.2013-1697
58.
Balise
,
V. D.
,
Meng
,
C.-X.
,
Cornelius-Green
,
J. N.
,
Kassotis
,
C. D.
,
Kennedy
,
R.
, and
Nagel
,
S. C.
,
2016
, “
Systematic Review of the Association Between Oil and Natural Gas Extraction Processes and Human Reproduction
,”
Fertil. Steril.
,
106
(
4
), pp.
795
819
. 10.1016/j.fertnstert.2016.07.1099
59.
Hays
,
J.
,
McCawley
,
M.
, and
Shonkoff
,
S. B. C.
,
2017
, “
Public Health Implications of Environmental Noise Associated With Unconventional Oil and Gas Development
,”
Sci. Total Environ.
,
580
, pp.
448
456
. 10.1016/j.scitotenv.2016.11.118
60.
Yost
,
E. E.
,
Stanek
,
J.
,
DeWoskin
,
R. S.
, and
Burgoon
,
L. D.
,
2016
, “
Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters
,”
Environ. Sci. Technol.
,
50
(
9
), pp.
4788
4797
. 10.1021/acs.est.5b04645
61.
Webb
,
E.
,
Bushkin-Bedient
,
S.
,
Cheng
,
A.
,
Kassotis
,
C. D.
,
Balise
,
V.
, and
Nagel
,
S. C.
,
2014
, “
Developmental and Reproductive Effects of Chemicals Associated With Unconventional Oil and Natural Gas Operations
,”
Rev. Environ. Health
,
29
(
4
), p.
4
. 10.1515/reveh-2014-0057
62.
Warpinski
,
N. R.
,
Wolhart
,
S. L.
, and
Wright
,
C. A.
,
2004
, “
Analysis and Prediction of Microseismicity Induced by Hydraulic Fracturing
,”
SPE J.
,
9
(
1
), pp.
24
33
. 10.2118/87673-PA
63.
Pearson
,
C.
,
1981
, “
The Relationship Between Microseismicity and High Pore Pressures During Hydraulic Stimulation Experiments in Low Permeability Granitic Rocks
,”
ASME J. Geophys. Res. Solid Earth
,
86
(
B9
), pp.
7855
7864
. 10.1029/JB086iB09p07855
64.
Frohlich
,
C.
,
Potter
,
E.
,
Hayward
,
C.
, and
Stump
,
B.
,
2010
, “
Dallas-Fort Worth Earthquakes Coincident With Activity Associated With Natural Gas Production
,”
Lead. Edge
,
29
(
3
), pp.
270
275
. 10.1190/1.3353720
65.
Zhang
,
D.
, and
Yang
,
T.
,
2015
, “
Environmental Impacts of Hydraulic Fracturing in Shale Gas Development in the United States
,”
Pet. Explor. Dev.
,
42
(
6
), pp.
876
883
. 10.1016/S1876-3804(15)30085-9
66.
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Al-Nakhli
,
A.
, and
BaTaweel
,
M.
,
2019
, “
An Experimental Study to Reduce the Fracture Pressure of High Strength Rocks Using a Novel Thermochemical Fracturing Approach
,”
Geofluids
,
2019
, pp.
1
16
. 10.1155/2019/1904565
67.
ASTM
,
2010
, “
Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures
,”
ASTM International
,
West Conshohocken, PA
, ASTM D7012-10.
68.
Dudley
,
J. W.
,
Brignoli
,
M.
,
Crawford
,
B. R.
,
Ewy
,
R. T.
,
Love
,
D. K.
,
McLennan
,
J. D.
,
Ramos
,
G. G.
,
Shafer
,
J. L.
,
Sharf-Aldin
,
M. H.
,
Siebrits
,
E.
,
Boyer
,
J.
, and
Chertov
,
M. A.
,
2016
, “
ISRM Suggested Method for Uniaxial-Strain Compressibility Testing for Reservoir Geomechanics
,”
Rock Mech. Rock Eng.
,
49
(
10
), pp.
4153
4178
. 10.1007/s00603-016-1055-4
69.
Tariq
,
Z.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Elkatatny
,
S.
,
Ali
,
A. Z.
,
Al-Shehri
,
D.
, and
Belayneh
,
M. W.
,
2019
, “
A New Look Into the Prediction of Static Young’s Modulus and Unconfined Compressive Strength of the Carbonate Using Artificial Intelligence Tools
,”
Pet. Geosci.
,
25
(
4
), pp.
389
399
. 10.1144/petgeo2018-126
70.
Farid Ibrahim
,
A.
, and
Nasr-El-Din
,
H.
,
2018
, “
Evaluation of the Breakdown Pressure to Initiate Hydraulic Fractures of Tight Sandstone and Shale Formations
,”
SPE Trinidad and Tobago Section Energy Resources Conference
,
Port of Spain, Trinidad and Tobago
,
June 25–26
.
71.
Haimson
,
B. C.
, and
Zhao
,
Z.
,
1991
, “
Effect of Borehole Size and Pressurization Rate on Hydraulic Fracturing Breakdown Pressure
,”
The 32nd U.S. Symposium on Rock Mechanics (USRMS)
,
Norman, OK
,
July 10–12
,
American Rock Mechanics Association
,
Alexandria, VA
.
72.
Ito
,
T.
,
2008
, “
Effect of Pore Pressure Gradient on Fracture Initiation in Fluid Saturated Porous Media: Rock
,”
Eng. Fract. Mech.
,
75
(
7
), pp.
1753
1762
. 10.1016/j.engfracmech.2007.03.028
73.
Schwartzkopff
,
A. K.
,
Melkoumian
,
N. S.
, and
Xu
,
C.
,
2017
, “
Fracture Mechanics Approximation to Predict the Breakdown Pressure Using the Theory of Critical Distances
,”
Int. J. Rock Mech. Min. Sci.
,
95
, pp.
48
61
. 10.1016/j.ijrmms.2017.03.006
74.
Zhuang
,
L.
,
Kim
,
K. Y.
,
Shin
,
H. S.
,
Jung
,
S. G.
, and
Diaz
,
M.
,
2018
, “
Experimental Investigation of Effects of Borehole Size and Pressurization Rate on Hydraulic Fracturing Breakdown Pressure of Granite
,”
ISRM International Symposium—10th Asian Rock Mechanics Symposium, ARMS 2018
,
Singapore
,
Oct. 29–Nov. 3
, pp.
978
981
.
You do not currently have access to this content.