Fracturing is a fundamental technique for enhancing oil recovery of tight sandstone reservoir. The pores in tight reservoirs generally have small radii and generate tremendous capillary force; accordingly, the imbibition effect can significantly affect retention and absorption of the fracturing fluid. In this study, the imbibition behaviors of the fracturing fluid were experimentally investigated, and the effects of interfacial tension, (IFT) permeability, oil viscosity, and the salinity of the imbibition fluid were determined. In addition, combining with nuclear magnetic resonance (NMR)-based core analysis, fluid distribution, and the related variations in imbibition and displacement processes were analyzed. Finally, some key influencing factors of imbibition of the residual fracturing fluid, the difference and correlation between imbibition and displacement, as well as the contribution of imbibition to displacement were explored so as to provide optimization suggestions for guiding the application of oil-displacing fracturing fluid in exploration. Results show that imbibition recovery increased with time, but the imbibition rate gradually dropped. There exists an optimal interfacial tension that corresponds to maximum imbibition recovery. In addition, imbibition recovery increased as permeability and salinity increases and oil viscosity decreases. Furthermore, it was found that extracted oil from the movable pore throat space was almost equal to that from the irreducible pore throat space during imbibition and their contribution in the irreducible pore throat space was greater than in the movable pore throat space in the displacement process. Hence, imbibition plays a more important role during the displacement process in the reservoirs with finer porous structure than previously thought.

References

1.
Zhou
,
Z.
,
Abass
,
H.
,
Li
,
X.
,
Bearinger
,
D.
, and
Frank
,
W.
,
2016
, “
Mechanisms of Imbibition During Hydraulic Fracturing in Shale Formations
,”
J. Pet. Sci. Eng.
,
141
, pp.
125
132
.
2.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
(
1
), pp.
666
680
.
3.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
4.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
,”
SPE Canada Unconventional Resources Conference
, Calgary, AB, Canada, SPE Paper No.
SPE 189829
.
5.
Guo
,
T.
,
Gong
,
F.
,
Lin
,
X.
,
Lin
,
Q.
, and
Wang
,
X.
,
2018
, “
Experimental Investigation on Damage Mechanism of Guar Gum Fracturing Fluid to Low-Permeability Reservoir Based on Nuclear Magnetic Resonance
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072906
.
6.
Li
,
Y.
,
2011
, “
Analytical Solutions for Linear Counter-Current Spontaneous Imbibition in the Frontal Flow Period
,”
Transp. Porous Media
,
86
(
3
), pp.
827
850
.
7.
Li
,
Y.
,
Morrow
,
N. R.
, and
Ruth
,
D.
,
2003
, “
Similarity Solution for Linear Counter-Current Spontaneous Imbibition
,”
J. Pet. Sci. Eng.
,
39
(
3–4
), pp.
309
326
.
8.
Morrow
,
N. R.
, and
Mason
,
G.
,
2001
, “
Recovery of Oil by Spontaneous Imbibition
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
4
), pp.
321
337
.
9.
Dutta
,
R.
,
Lee
,
C.-H.
,
Odumabo
,
S.
,
Ye
,
P.
,
Walker
,
S. C.
,
Karpyn
,
Z. T.
, and
Ayala
,
H.
, and
Luis
,
F.
,
2014
, “
Experimental Investigation of Fracturing-Fluid Migration Caused by Spontaneous Imbibition in Fractured Low-Permeability Sands
,”
SPE Reservoir Eval. Eng.
,
17
(
1
), pp.
74
81
.
10.
Zhong
,
J.
,
Yang
,
X.
,
Chen
,
Y.
,
Tang
,
H.
,
Lv
,
D.
, and
Zhang
,
Y.
,
2013
, “
A New Experimental Method for Spontaneous Imbibition of Low Permeability Cores
,”
Petrochem. Ind. Appl.
,
32
(
6
), pp.
61
65
.
11.
Iffly
,
R.
,
Rousselet
,
D. C.
, and
Vermeulen
,
J. L.
,
1972
, “
Fundamental Study of Imbibition in Fissured Oil Fields
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
, San Antonio, TX, Oct. 8–11, SPE Paper No.
SPE-4102-MS
.
12.
Li
,
S.
, and
Liu
,
W.
,
2007
, “
Experimental Study of Spontaneous Imbibition in Low-Permeability Reservoir
,”
Acta Pet. Sin.
,
28
(
2
), pp.
109
112
.
13.
Zhu
,
W. Y.
,
Ju
,
Y.
, and
Zhao
,
M.
,
2002
, “
Spontaneous Imbibition Mechanism of Flow Through Porous Media and Waterflooding in Low Permeability Fractured Sandstone Reservoir
,”
Acta Pet. Sin.
,
23
(
6
), pp.
56
59
.
14.
Zhou
,
D.
,
Jia
,
L.
,
Kamath
,
J.
, and
Kovscek
,
A. R.
,
2002
, “
Scaling of Counter-Current Imbibition Processes in Low-Permeability Porous Media
,”
J. Pet. Sci. Eng.
,
33
(
1–3
), pp.
61
74
.
15.
Tang
,
Y.
,
Kang
,
Y.
,
Liu
,
X.
, and
You
,
L.
,
2015
, “
Experimental Research on Flooding Oil by Water Imbibition in Tight Sandstone Oil Reservoir
,”
Acta Geol. Sin. (Engl. Ed.)
,
89
(
Suppl. 1
), pp.
415
416
.
16.
Austad
,
T.
, and
Standnes
,
D. C.
,
2003
, “
Spontaneous Imbibition of Water Into Oil-Wet Carbonates
,”
J. Pet. Sci. Eng.
,
39
(
3–4
), pp.
363
376
.
17.
Kesserwan
,
H.
,
Jin
,
G.
,
Goh
,
S.
, and
Agrawal
,
G.
,
2016
, “
NMR Characterization of Fluid Imbibition in Thinly-Layered Source Rocks—Where Oil and Brine Invade in the Mixed-Wet Pore System
,” Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, Nov. 7–10, SPE Paper No.
SPE-183239-MS
.
18.
Dong
,
X.
,
Sun
,
J.
,
Li
,
J.
,
Gao
,
H.
,
Liu
,
X.
, and
Wang
,
J.
,
2015
, “
Experimental Research of Gas Shale Electrical Properties by NMR and the Combination of Imbibition and Drainage
,”
J. Geophys. Eng.
,
12
(
4
), pp.
610
619
.
19.
Standnes
,
D. C.
,
Nogaret
,
L. A. D.
,
Chen
,
H. L.
, and
Austad
,
T.
,
2002
, “
An Evaluation of Spontaneous Imbibition of Water Into Oil-Wet Carbonate Reservoir Cores Using a Nonionic and a Cationic Surfactant
,”
Energy Fuels
,
16
(
6
), pp.
1557
1564
.
20.
Zhou
,
X.
,
Morrow
,
N. R.
, and
Ma
,
S.
,
2000
, “
Interrelationship of Wettability, Initial Water Saturation, Aging Time, and Oil Recovery by Spontaneous Imbibition and Waterflooding
,”
SPE J.
,
5
(
2
), pp.
199
207
.
21.
Babadagli
,
T.
,
2005
, “
Analysis of Oil Recovery by Spontaneous Imbibition of Surfactant Solution
,”
Oil Gas Sci. Technol.
,
60
(
4
), pp.
697
710
.
22.
Stoll
,
M.
,
Hofman
,
J.
,
Ligthelm
,
D. J.
,
Faber
,
M. J.
, and
Hoek
,
P. V. D.
,
2008
, “
Toward Field-Scale Wettability Modification the Limitations of Diffusive Transport
,”
SPE Reservoir Eval. Eng.
,
11
(
3
), pp.
633
640
.
23.
Schechter
,
D. S.
, and
Zhou
,
D.
, and
Orr
,
F. M.
, Jr.
,
1994
, “
Low IFT Drainage and Imbibition
,”
J. Pet. Sci. Eng.
,
11
(
4
), pp.
283
300
.
24.
Schechter
,
D. S.
, and
Zhou
,
D.
, and
Orr
,
F. M.
, Jr.
,
1991
, “
Capillary Imbibition and Gravity Segregation in Low IFT Systems
,”
Infect. Immun.
,
71
(
12
), pp.
6734
6741
.
25.
Hirasaki
,
G.
, and
Zhang
,
D. L.
,
2004
, “
Surface Chemistry of Oil Recovery From Fractured, Oil-Wet, Carbonate Formations
,”
SPE J.
,
9
(
2
), pp.
151
162
.
26.
Alshehri
,
A.
,
Sagatov
,
E.
, and
Kovscek
,
A.
,
2009
, “
Pore-Level Mechanics of Forced and Spontaneous Imbibition of Aqueous Surfactant Solutions in Fractured Porous Media
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Oct. 4–7, SPE Paper No.
SPE-124946-MS
.
27.
Keijzer
,
P. P. M.
, and
Vries
,
A. S. D.
,
1993
, “
Imbibition of Surfactant Solutions
,”
SPE Adv. Technol.
,
1
(
2
), pp.
110
113
.
28.
Wang
,
J.
,
Liu
,
H.
,
Xia
,
J.
,
Liu
,
Y.
,
Cheng
,
H.
,
Meng
,
Q.
, and
Yang
,
G.
,
2017
, “
Mechanism Simulation of Oil Displacement by Imbibition in Fractured Reservoirs
,”
Pet. Explor. Dev.
,
44
(
5
), pp.
805
814
.
29.
Strand
,
S.
,
Standnes
,
D. C.
, and
Austad
,
T.
,
2003
, “
Spontaneous Imbibition of Aqueous Surfactant Solutions Into Neutral to Oil-Wet Carbonate Cores: Effects of Brine Salinity and Composition
,”
Energy Fuels
,
17
(
5
), pp.
1133
1144
.
30.
Ma
,
S.
,
Zhang
,
X.
,
Morrow
,
N.
, and
Zhou
,
X.
,
1999
, “
Characterization of Wettability From Spontaneous Imbibition Measurements
,”
J. Can. Pet. Technol.
,
38
(
13
), pp. 94–47.
31.
Alotaibi
,
M.
,
Azmy
,
R.
, and
Nasr-El-Din
,
H.
,
2010
, “
Wettability Challenges in Carbonate Reservoirs
,” SPE Improved Oil Recovery Symposium, Tulsa, OK, Apr. 24–28, SPE Paper No.
SPE-129972-MS
.
32.
Xie
,
X.
, and
Morrow
,
N. R.
,
2001
, “
Oil Recovery by Spontaneous Imbibition From Weakly Water-Wet Rocks
,”
Petrophysics
,
42
(
4
), pp.
313
322
.https://www.onepetro.org/journal-paper/SPWLA-2001-v42n4a1
33.
Aifen
,
L.
,
Ren
,
X.
,
Wang
,
G.
,
Wang
,
Y.
, and
Jiang
,
K.
,
2015
, “
Characterization of Pore Structure of Low Permeability Reservoirs Using a Nuclear Magnetic Resonance Method
,”
J. China Univ. Pet., Ed. Nat. Sci.
,
39
(
6
), pp.
92
98
.
34.
Zhao
,
X.
,
Qiu
,
Z.
,
Sun
,
B.
,
Liu
,
S.
,
Xing
,
X.
, and
Wang
,
M.
,
2019
, “
Formation Damage Mechanisms Associated With Drilling and Completion Fluids for Deepwater Reservoirs
,”
J. Pet. Sci. Eng.
,
173
, pp.
112
121
.
35.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054502
.
36.
Lu
,
C.
,
Zhao
,
W.
,
Liu
,
Y.
, and
Dong
,
X.
,
2018
, “
Pore-Scale Transport Mechanisms and Macroscopic Displacement Effects of In-Situ Oil-in-Water Emulsions in Porous Media
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102904
.
37.
The National Development and Reform Commission of the People's Republic of China
,
2007
, “
Specification for Laboratory Measurement of Magnetic Resonance Parameters for Rock Samples
,”
Petroleum Industry Press
,
Beijing, China
, Standard No. SY/T 6490-2007.
You do not currently have access to this content.