The Goswami cycle is a cycle that combines an ammonia–water vapor absorption cycle and a Rankine cycle for cooling and mechanical power purposes by using thermal heat sources such as solar energy or geothermal steam. In this paper, a theoretical investigation was conducted to determine the performance outputs of the cycle, namely, net mechanical power, cooling, effective first law efficiency and exergy efficiency, for a boiler and an absorber temperature of 85 °C and 35 °C, respectively, and different boiler pressures and ammonia-water concentrations. In addition, an experimental investigation was carried out to verify the predicted trends of theoretical analysis and evaluate the performance of a modified scroll expander. The theoretical analysis showed that maximum effective first law and exergy efficiencies were 7.2% and 45%, respectively. The experimental tests showed that the scroll expander reached a 30–40% of efficiency when boiler temperature was 85 °C and rectifier temperature was 55 °C. Finally, it was obtained that superheated inlet conditions improved the efficiency of the modified expander.

References

1.
U.S. Energy Information Administration
,
2016
, “Electric power Annual 2015,” U.S. Department of Energy, Washington, DC, accessed Mar. 1, 2018, https://www.eia.gov/electricity/annual/archive/03482015.pdf
2.
Fontalvo
,
A.
,
Solano
,
J.
,
Pedraza
,
C.
,
Bula
,
A.
,
Gonzalez Quiroga
,
A.
, and
Vasquez Padilla
,
R.
,
2017
, “
Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated With Low-Grade Heat Sources
,”
Entropy
,
19
(
10
), p.
476
.
3.
Kalina
,
A. I.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(4), pp.
737
742
.
4.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
,
1996
, “
Absorption Power Cycles
,”
Energy
,
21
(
1
), pp.
21
27
.
5.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of an Ammonia-Water Power System With Lng (Liquefied Natural Gas) as Its Heat Sink
,”
Energy
,
50
, pp.
513
522
.
6.
Mergner
,
H.
, and
Weimer
,
T.
,
2015
, “
Performance of Ammonia-Water Based Cycles for Power Generation From Low Enthalpy Heat Sources
,”
Energy
,
88
, pp.
93
100
.
7.
Mohammadkhani
,
F.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2015
, “
A Comparative Study on the Ammonia–Water Based Bottoming Power Cycles: The Exergoeconomic Viewpoint
,”
Energy
,
87
, pp.
425
434
.
8.
Zare
,
V.
, and
Mahmoudi
,
S.
,
2015
, “
A Thermodynamic Comparison Between Organic Rankine and Kalina Cycles for Waste Heat Recovery From the Gas Turbine-Modular Helium Reactor
,”
Energy
,
79
, pp.
398
406
.
9.
Goswami
,
D. Y.
,
1995
, “
Solar Thermal Power: Status of Technologies and Opportunities for Research
,”
Second ISHMT-ASME Heat and Mass Transfer Conference
, Tata McGraw Hill, New Delhi, India, Dec. 28–30, pp.
57
60
.https://www.researchgate.net/publication/309350258_Solar_thermal_power_status_of_technologies_and_opportunities_for_research
11.
Zheng
,
D.
,
Chen
,
B.
,
Qi
,
Y.
, and
Jin
,
H.
,
2006
, “
Thermodynamic Analysis of a Novel Absorption Power/Cooling Combined-Cycle
,”
Appl. Energy
,
83
(
4
), pp.
311
323
.
12.
Liu
,
M.
, and
Zhang
,
N.
,
2007
, “
Proposal and Analysis of a Novel Ammonia-Water Cycle for Power and Refrigeration Cogeneration
,”
Energy
,
32
(
6
), pp.
961
970
.
13.
Sun
,
L.
,
Han
,
W.
,
Jing
,
X.
,
Zheng
,
D.
, and
Jin
,
H.
,
2013
, “
A Power and Cooling Cogeneration System Using Mid/Low-Temperature Heat Source
,”
Appl. Energy
,
112
, pp.
886
897
.
14.
Yu
,
Z.
,
Han
,
J.
,
Liu
,
H.
, and
Zhao
,
H.
,
2014
, “
Theoretical Study on a Novel Ammonia–Water Cogeneration System With Adjustable Cooling to Power Ratios
,”
Appl. Energy
,
122
, pp.
53
61
.
15.
Rashidi
,
J.
,
Ifaei
,
P.
,
Esfahani
,
I. J.
,
Ataei
,
A.
, and
Yoo
,
C. K.
,
2016
, “
Thermodynamic and Economic Studies of Two New High Efficient Power-Cooling Cogeneration Systems Based on Kalina and Absorption Refrigeration Cycles
,”
Energy Convers. Manage.
,
127
(
Suppl. C
), pp.
170
186
.
16.
Rashidi
,
J.
, and
Yoo
,
C. K.
,
2017
, “
Exergetic and Exergoeconomic Studies of Two Highly Efficient Power-Cooling Cogeneration Systems Based on the Kalina and Absorption Refrigeration Cycles
,”
Appl. Therm. Eng.
,
124
(
Suppl. C
), pp.
1023
1037
.
17.
Alexis
,
G.
,
2007
, “
Performance Parameters for the Design of a Combined Refrigeration and Electrical Power Cogeneration System
,”
Int. J. Refrig.
,
30
(
6
), pp.
1097
1103
.
18.
Zheng
,
B.
, and
Weng
,
Y.
,
2010
, “
A Combined Power and Ejector Refrigeration Cycle for Low Temperature Heat Sources
,”
Sol. Energy
,
84
(
5
), pp.
784
791
.
19.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Exergy Analysis, Parametric Analysis and Optimization for a Novel Combined Power and Ejector Refrigeration Cycle
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1983
1990
.
20.
Oliveira
,
A.
,
Afonso
,
C.
,
Matos
,
J.
,
Riffat
,
S.
,
Nguyen
,
M.
, and
Doherty
,
P.
,
2002
, “
A Combined Heat and Power System for Buildings Driven by Solar Energy and Gas
,”
Appl. Therm. Eng.
,
22
(
6
), pp.
587
593
.
21.
Yang
,
X.
,
Zhao
,
L.
,
Li
,
H.
, and
Yu
,
Z.
,
2015
, “
Theoretical Analysis of a Combined Power and Ejector Refrigeration Cycle Using Zeotropic Mixture
,”
Appl. Energy
,
160
, pp.
912
919
.
22.
Wang
,
J.
,
Dai
,
Y.
,
Zhang
,
T.
, and
Ma
,
S.
,
2009
, “
Parametric Analysis for a New Combined Power and Ejector–Absorption Refrigeration Cycle
,”
Energy
,
34
(
10
), pp.
1587
1593
.
23.
Wang
,
J.
,
Dai
,
Y.
, and
Gao
,
L.
,
2008
, “
Parametric Analysis and Optimization for a Combined Power and Refrigeration Cycle
,”
Appl. Energy
,
85
(
11
), pp.
1071
1085
.
24.
Popli
,
S.
,
Rodgers
,
P.
, and
Eveloy
,
V.
,
2012
, “
Trigeneration Scheme for Energy Efficiency Enhancement in a Natural Gas Processing Plant Through Turbine Exhaust Gas Waste Heat Utilization
,”
Appl. Energy
,
93
, pp.
624
636
.
25.
Takeshita
,
K.
,
Amano
,
Y.
, and
Hashizume
,
T.
,
2005
, “
Experimental Study of Advanced Cogeneration System With Ammonia–Water Mixture Cycles at Bottoming
,”
Energy
,
30
(
2–4
), pp.
247
260
.
26.
Zhang
,
N.
, and
Lior
,
N.
,
2007
, “
Development of a Novel Combined Absorption Cycle for Power Generation and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
254
265
.
27.
Zhai
,
H.
,
Dai
,
Y. J.
,
Wu
,
J. Y.
, and
Wang
,
R. Z.
,
2009
, “
Energy and Exergy Analyses on a Novel Hybrid Solar Heating, Cooling and Power Generation System for Remote Areas
,”
Appl. Energy
,
86
(
9
), pp.
1395
1404
.
28.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2008
, “
Thermodynamic Analysis of a Novel Ammonia–Water Trilateral Rankine Cycle
,”
Thermochim. Acta
,
477
(
1–2
), pp.
7
15
.
29.
Wagar
,
W. R.
,
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2010
, “
Thermodynamic Performance Assessment of an Ammonia-Water Rankine Cycle for Power and Heat Production
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2501
2509
.
30.
Wang
,
H.
,
Peterson
,
R.
,
Harada
,
K.
,
Miller
,
E.
,
Ingram-Goble
,
R.
,
Fisher
,
L.
,
Yih
,
J.
, and
Ward
,
C.
,
2011
, “
Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Heat Activated Cooling
,”
Energy
,
36
(
1
), pp.
447
458
.
31.
Goswami
,
D. Y.
,
1998
, “
Solar Thermal Power Technology: Present Status and Ideas
,”
Energy Sources
,
20
, pp.
137
145
.
32.
Padilla
,
R. V.
,
Demirkaya
,
G.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2010
, “
Analysis of Power and Cooling Cogeneration Using Ammonia-Water Mixture
,”
Energy
,
35
(
12
), pp.
4649
4657
.
33.
Demirkaya
,
G.
,
Vasquez Padilla
,
R.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2011
, “
Analysis of a Combined Power and Cooling Cycle for Low-Grade Heat Sources
,”
Int. J. Energy Res.
,
35
(
13
), pp.
1145
1157
.
34.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.
35.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
.
36.
Fontalvo
,
A.
,
Pinzon
,
H.
,
Duarte
,
J.
,
Bula
,
A.
,
Quiroga
,
A. G.
, and
Padilla
,
R. V.
,
2013
, “
Exergy Analysis of a Combined Power and Cooling Cycle
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
164
171
.
37.
Demirkaya
,
G.
,
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Lake
,
M.
, and
Lim
,
Y. Y.
,
2017
, “
Thermal and Exergetic Analysis of the Goswami Cycle Integrated With Mid-Grade Heat Sources
,”
Entropy
,
19
(
8
), p.
416
.
38.
Martin
,
C.
,
2004
, “
Study of Cooling Production With a Combined Power and Cooling Thermodynamic Cycle
,”
Ph.D. thesis
, University of Florida, Gainesville, FL.http://etd.fcla.edu/UF/UFE0008332/martin_c.pdf
39.
Tamm
,
G.
,
2003
, “
Experimental Investigation of an Ammonia-Based Combined Power and Cooling Cycle
,”
Ph.D. thesis
, University of Florida, Gainesville, FL.http://adsabs.harvard.edu/abs/2003PhDT........51T
40.
Yanagisawa
,
T.
,
Shimizu
,
T.
,
Fukuta
,
M.
, and
Handa
,
T.
,
1988
, “
Study on Fundamental Performance of Scroll Expander
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
54
(
506
), pp.
2798
2803
.
41.
Kim
,
H.
,
Ahn
,
J.
,
Park
,
I.
, and
Rha
,
P.
,
2007
, “
Scroll Expander for Power Generation From a Low-Grade Steam Source
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
5
), pp.
705
711
.
42.
Xu
,
F.
, and
Goswami
,
D. Y.
,
1999
, “
Thermodynamic Properties of Ammonia-Water Mixtures for Power-Cycle Applications
,”
Energy
,
24
(
6
), pp.
525
36
.
43.
Tillner-Roth
,
R.
, and
Friend
,
D.
,
1998
, “
A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water+ Ammonia}
,”
J. Phys. Chem. Ref. Data
,
27
, pp.
63
96
.
44.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221
227
.
45.
Goel
,
N.
,
2005
, “
Theoretical and Experimental Analysis of Absorption-Condensation in a Combined Power and Cooling Cycle
,”
Ph.D. thesis
, University of Florida, Gainesville, FL.http://etd.fcla.edu/UF/UFE0012440/goel_n.pdf
46.
Goel
,
N.
, and
Goswami
,
D. Y.
,
2005
, “
A Compact Falling Film Absorber
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
957
965
.
47.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
.
48.
DiPippo
,
R.
,
2007
, “
Ideal Thermal Efficiency for Geothermal Binary Plants
,”
Geothermics
,
36
(
3
), pp.
276
285
.
49.
Lee
,
W. Y.
, and
Kim
,
S. S.
,
1992
, “
The Maximum Power From a Finite Reservoir for a Lorentz Cycle
,”
Energy
,
17
(
3
), pp.
275
281
.
50.
Oomori
,
H.
, and
Ogino
,
S.
,
1993
, “Waste Heat Recovery of Passenger Car Using a Combination of Rankine Bottoming Cycle and Evaporative Engine Cooling System,”
SAE
Paper No. 930880.
51.
Quoilin
,
S.
,
Lemort
,
V.
, and
Lebrun
,
J.
,
2010
, “
Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander
,”
Appl. Energy
,
87
(
4
), pp.
1260
1268
.
52.
Kumar
,
G. P.
,
Saravanan
,
R.
, and
Coronas
,
A.
,
2017
, “
Experimental Studies on Combined Cooling and Power System Driven by Low-Grade Heat Sources
,”
Energy
,
128
(
Suppl. C
), pp.
801
812
.
You do not currently have access to this content.