Due to the increasing demand for clean and potable water stemming from population growth and exacerbated by the scarcity of fresh water resources, more attention has been drawn to innovative methods for water desalination. Capacitive deionization (CDI) is a low maintenance and energy efficient technique for desalinating brackish water, which employs an electrical field to adsorb ions into a high-porous media. After the saturation of the porous electrodes, their adsorption capacity can be restored through a regeneration process. Herein, based on a physical model previously developed, we conjecture that for a given amount of time and volume of water, multiple desalination cycles in a high flow rate regime will outperform desalinating in a single cycle at a low flow rate. Moreover, splitting a CDI unit into two subunits, with the same total length, will lead to higher desalination. Based on these premises, we introduce a new approach aimed at enhancing the overall performance of CDI. An array of CDI cells are sequentially connected to each other with intermediate solutions placed in between them. Desalination tests were conducted to compare the performance of the proposed system, consisting of two CDI units and one intermediate solution buffer, with a two-cascaded-CDI unit system with no intermediate solution. Experimental data demonstrated the improved performance of the buffered system over the nonbuffered system, in terms of desalination percentage and energy consumption. The new proposed method can lead to lower amount of energy consumed per unit volume of the desalinated water.

References

1.
Service
,
R. F.
,
2006
, “
Desalination Freshens Up
,”
Science
,
313
(
5790
), pp.
1088
1090
.
2.
Wong
,
K. V.
, and
Pecora
,
C.
,
2015
, “
Recommendations for Energy–Water–Food Nexus Problems
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032002
.
3.
McGlade
,
J.
,
Werner
,
B.
,
Young
,
M.
,
Matlock
,
M.
,
Jefferies
,
D.
,
Sonnemann
,
G.
,
Aldaya
,
M.
,
Pfister
,
S.
,
Berger
,
M.
,
Farell
,
C.
,
Hyde
,
K.
,
Wackernagel
,
M.
,
Hoekstra
,
A.
,
Mathews
,
R.
,
Liu
,
J.
,
Ercin
,
E.
,
Weber
,
J. L.
,
Alfieri
,
A.
,
Martinez-Lagunes
,
R.
,
Edens
,
B.
,
Schulte
,
P.
,
Wirén-Lehr
,
S. V.
, and
Gee
,
D.
,
2012
, “
Measuring Water Use in a Green Economy
,” UNEP, Paris, France, Job No. DTI/1461/PA.
4.
Anderson
,
M. A.
,
Cudero
,
A. L.
, and
Palma
,
J.
,
2010
, “
Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete
?,”
Electrochim. Acta
,
55
(
12
), pp.
3845
3856
.
5.
Klausner
,
J. F.
,
Li
,
Y.
,
Darwish
,
M.
, and
Mei
,
R.
,
2004
, “
Innovative Diffusion Driven Desalination Process
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
219
225
.
6.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2014
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011201
.
7.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
.
8.
Farmer
,
J. C.
,
Bahowick
,
S. M.
,
Harrar
,
J. E.
,
Fix
,
D. V.
,
Martinelli
,
R. E.
,
Vu
,
A. K.
, and
Carroll
,
K. L.
,
1997
, “
Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water
,”
Energy Fuels
,
11
(
2
), pp.
337
347
.
9.
Oren
,
Y.
,
2008
, “
Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review)
,”
Desalination
,
228
(
1–3
), pp.
10
29
.
10.
Demirer
,
O. N.
,
Naylor
,
R. M.
,
Perez
,
C. A. R.
,
Wilkes
,
E.
, and
Hidrovo
,
C.
,
2013
, “
Energetic Performance Optimization of a Capacitive Deionization System Operating With Transient Cycles and Brackish Water
,”
Desalination
,
314
, pp.
130
138
.
11.
Li
,
H.
,
Gao
,
Y.
,
Pan
,
L.
,
Zhang
,
Y.
,
Chen
,
Y.
, and
Sun
,
Z.
,
2008
, “
Electrosorptive Desalination by Carbon Nanotubes and Nanofibres Electrodes and Ion-Exchange Membranes
,”
Water Res.
,
42
(
20
), pp.
4923
4928
.
12.
Mossad
,
M.
, and
Zou
,
L.
,
2012
, “
A Study of the Capacitive Deionisation Performance Under Various Operational Conditions
,”
J. Hazard. Mater.
,
213–214
, pp.
491
497
.
13.
Ryoo
,
M.-W.
, and
Seo
,
G.
,
2003
, “
Improvement in Capacitive Deionization Function of Activated Carbon Cloth by Titania Modification
,”
Water Res.
,
37
(
7
), pp.
1527
1534
.
14.
Porada
,
S.
,
Weinstein
,
L.
,
Dash
,
R.
,
van der Wal
,
A.
,
Bryjak
,
M.
,
Gogotsi
,
Y.
, and
Biesheuvel
,
P. M.
,
2012
, “
Water Desalination Using Capacitive Deionization With Microporous Carbon Electrodes
,”
ACS Appl. Mater. Interfaces
,
4
(
3
), pp.
1194
1199
.
15.
Dermentzis
,
K.
, and
Ouzounis
,
K.
,
2008
, “
Continuous Capacitive Deionization–Electrodialysis Reversal Through Electrostatic Shielding for Desalination and Deionization of Water
,”
Electrochim. Acta
,
53
(
24
), pp.
7123
7130
.
16.
Perez
,
C. A. R.
,
Demirer
,
O. N.
,
Clifton
,
R. L.
,
Naylor
,
R. M.
, and
Hidrovo
,
C. H.
,
2013
, “
Macro Analysis of the Electro-Adsorption Process in Low Concentration NaCl Solutions for Water Desalination Applications
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
E13
E21
.
17.
Biesheuvel
,
P. M.
, and
Bazant
,
M. Z.
,
2010
, “
Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes
,”
Phys. Rev. E
,
81
(
3
), p.
031502
.
18.
Biesheuvel
,
P. M.
,
Fu
,
Y.
, and
Bazant
,
M. Z.
,
2011
, “
Diffuse Charge and Faradaic Reactions in Porous Electrodes
,”
Phys. Rev. E
,
83
(
6
), p.
061507
.
19.
Biesheuvel
,
P. M.
,
Fu
,
Y.
, and
Bazant
,
M. Z.
,
2012
, “
Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes
,”
Russ. J. Electrochem.
,
48
(
6
), pp.
580
592
.
20.
Biesheuvel
,
P. M.
,
Zhao
,
R.
,
Porada
,
S.
, and
van der Wal
,
A.
,
2011
, “
Theory of Membrane Capacitive Deionization Including the Effect of the Electrode Pore Space
,”
J. Colloid Interface Sci.
,
360
(
1
), pp.
239
248
.
21.
Wang
,
H.
,
Thiele
,
A.
, and
Pilon
,
L.
,
2013
, “
Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model
,”
J. Phys. Chem. C
,
117
(
36
), pp.
18286
18297
.
22.
Probstein
,
R. F.
,
2005
,
Physicochemical Hydrodynamics: An Introduction
,
Wiley
,
Hoboken, NJ
.
23.
Roussak
,
O. V.
,
2012
,
Applied Chemistry a Textbook for Engineers and Technologists
,
Springer
,
Heidelberg, Germany
.
24.
Matsushima
,
H.
,
Nishida
,
T.
,
Konishi
,
Y.
,
Fukunaka
,
Y.
,
Ito
,
Y.
, and
Kuribayashi
,
K.
,
2003
, “
Water Electrolysis Under Microgravity—Part 1: Experimental Technique
,”
Electrochim. Acta
,
48
(
28
), pp.
4119
4125
.
25.
Roy
,
A.
,
Watson
,
S.
, and
Infield
,
D.
,
2006
, “
Comparison of Electrical Energy Efficiency of Atmospheric and High-Pressure Electrolysers
,”
Int. J. Hydrogen Energy
,
31
(
14
), pp.
1964
1979
.
26.
Turner
,
J.
,
Sverdrup
,
G.
,
Mann
,
M. K.
,
Maness
,
P.-C.
,
Kroposki
,
B.
,
Ghirardi
,
M.
,
Evans
,
R. J.
, and
Blake
,
D.
,
2008
, “
Renewable Hydrogen Production
,”
Int. J. Energy Res.
,
32
(
5
), pp.
379
407
.
You do not currently have access to this content.