A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.

References

1.
Richter
,
H.
, and
Knoche
,
K.
,
1983
, “
Reversibility of Combustion Processes
,”
ACS Symposium Series
,
235
, pp.
71
85
.
2.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012201
.
3.
Junk
,
M.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Technical and Economical Assessment of the Indirectly Heated Carbonate Looping Process
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042210
.
4.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2016
, “
The Indirectly Heated Carbonate Looping Process for CO2 Capture—A Concept With Heat Pipe Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042211
.
5.
Khan
,
M. N.
, and
Shamim
,
T.
,
2016
, “
Investigation of Hydrogen Generation in a Three Reactor Chemical Looping Reforming Process
,”
Appl. Energy
,
162
, pp.
1186
1194
.
6.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2016
, “
Numerical Simulation Comparison of Two Reactor Configurations for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042213
.
7.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2015
, “
An Eulerian Approach to Computational Fluid Dynamics Simulation of a Chemical-Looping Combustion Reactor With Chemical Reactions
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042201
.
8.
Ishida
,
M.
, and
Jin
,
H.
,
1996
, “
A Novel Chemical-Looping Combustor Without NOx Formation
,”
Ind. Eng. Chem. Res.
,
35
(
7
), pp.
2469
2472
.
9.
Naqvi
,
R.
,
Bolland
,
O.
,
Brandvoll
,
O.
, and
Helle
,
K.
,
2004
, “
Chemical Looping Combustion Analysis of Natural Gas Fired Power Cycles With Inherent CO2 Capture
,”
ASME
Paper No. GT2004-53359.
10.
Naqvi
,
R.
,
Wolf
,
J.
, and
Bolland
,
O.
,
2007
, “
Part-Load Analysis of a Chemical-Looping Combustion (CLC) Combined Cycle With CO2 Capture
,”
Energy
,
32
(
4
), pp.
360
370
.
11.
Brandvoll
,
O.
, and
Bolland
,
O.
,
2004
, “
Inherent CO2 Capture Using Chemical Looping Combustion in a Natural Gas Fired Power Cycle
,”
ASME J. Eng. Gas Turbine Power
,
126
(
2
), pp.
316
321
.
12.
Consonni
,
S.
,
Lozza
,
G.
,
Pelliccia
,
G.
,
Rossini
,
S.
, and
Saviano
,
F.
,
2006
, “
Chemical-Looping Combustion for Combined Cycles With CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
525
534
.
13.
Wolf
,
J.
,
2004
, “
CO2 Mitigation in Advanced Power Cycles—Chemical Looping Combustion and Steam-Based Gasification
,”
Doctoral thesis
, KTH Chemical Engineering and Technology, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:14747/FULLTEXT01.pdf
14.
Wolf
,
J.
, and
Yan
,
J.
,
2005
, “
Parametric Study of Chemical Looping Combustion for Trigeneration of Hydrogen Heat and Electrical Power With CO2 Capture
,”
Int. J. Energy Res.
,
29
(
8
), pp.
739
753
.
15.
Álvaro
,
Á. J.
,
Paniagua
, I
. L.
,
Fernández
,
C. G.
,
Martín
,
J. R.
, and
Carlier
,
R. N.
,
2015
, “
Simulation of an Integrated Gasification Combined Cycle With Chemical-Looping Combustion and Carbon Dioxide Sequestration
,”
Energy Conversion Manage.
,
104
, pp.
170
179
.
16.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2010
, “
Conventional Exergetic and Exergoeconomic Analyses of a Power Plant With Chemical Looping Combustion for CO2 Capture
,”
Int. J. Thermodyn.
,
13
(
3
), pp.
77
86
.http://journals.indexcopernicus.com/issue.php?id=8849&id_issue=844625
17.
Peltola
,
P.
,
Tynjälä
,
T.
,
Ritvanen
,
J.
, and
Hyppänen
,
T.
,
2014
, “
Mass, Energy, and Exergy Balance Analysis of Chemical Looping With Oxygen Uncoupling (CLOU) Process
,”
Energy Conversion Manage.
,
87
, pp.
483
494
.
18.
Khan
,
M. N.
, and
Shamim
,
T.
,
2016
, “
Energy and Exergy Analysis of a Power Plant Based on a Three Reactor Chemical Looping Reforming System
,”
Int. J. Therm. Environ. Eng.
,
11
(
2
), pp.
125
130
.
19.
Wolf
,
J.
,
Anheden
,
M.
, and
Yan
,
J.
,
2005
, “
Comparison of Nickel- and Iron-Based Oxygen Carriers in Chemical Looping Combustion for CO2 Capture in Power Generation
,”
Fuel
,
84
(
7–8
), pp.
993
1006
.
20.
Hassan
,
B.
, and
Shamim
,
T.
,
2013
, “
Effect of Oxygen Carriers on Performance of Power Plants With Chemical Looping Combustion
,”
Proc. Eng.
,
56
, pp.
407
412
.
21.
Hossain
,
M. M.
, and
Lasa
,
H. L. D.
,
2008
, “
Chemical–Looping Combustion (CLC) for Inherent CO2 Separations—A Review
,”
Chem. Eng. Sci.
,
63
(
18
), pp.
4433
4451
.
22.
Bilgen
,
S.
,
2009
, “
Calculation and Interpretation of the Standard Chemical Exergies of Elements Using the Chemical Reference Species
,”
Acta Phys. Chim. Sin.
,
25
(
8
), pp.
1645
1649
.
23.
Rivero
,
R.
, and
Garfias
,
M.
,
2006
, “
Standard Chemical Exergy of Elements Updated
,”
Energy
,
31
(
15
), pp.
3310
3326
.
24.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2008
,
Thermodynamics: An Engineering Approach
, 7th ed.,
McGraw Hill
,
New York
.
25.
Anheden
,
M.
, and
Svedberg
,
G.
,
1998
, “
Energy Analysis of Chemical-Looping Combustion Systems
,”
Energy Conversion Manage
,
39
(
16–18
), pp.
1967
1980
.
26.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernández
,
J. R.
,
Ferrari
,
M. C.
,
Gross
,
R.
,
Hallett
,
J. P.
, and
Haszeldine
,
R. S.
,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
) pp.
130
189
.
You do not currently have access to this content.