The aim of this work is to study a binary Rankine process with a significantly higher efficiency compared to a conventional coal-fired power plant. This paper focuses on the design of the process and especially on an efficient combination of flue gas, potassium, and water streams in the components of the steam generator, such as economizers, evaporators, and superheaters, to decrease the overall exergy destruction. Based on a literature review, a base case for a coal-fired binary Rankine cycle with potassium and water as working fluids was developed and, in order to evaluate the thermodynamic quality of several variants, comparative exergy analyses were conducted. A simulation of the process and calculation of the values for the streams were carried out by using the flow-sheeting program CycleTempo, which simultaneously solves the mass and energy balances and contains property functions for the specific enthalpy and entropy of all the substances used. Necessary assumptions are predominantly based on literature data or they are discussed in the paper. We present the exergy analysis of the overall process that includes the flue gas streams as well as the potassium and water cycles. A design analysis and sensitivity studies show the effects of stream combinations and key parameters on the net efficiency, which is higher than 50%.

References

1.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2006
,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
Wiley
,
Chichester, UK
.
2.
Emmet
,
W. L. R.
,
1913
, “
Power From Mercury Vapor
,”
Trans. AIEE
,
32
(
2
), pp.
2133
2149
.
3.
Emmet
,
W. L. R.
,
1924
, “
The Emmet Mercury-Vapor Process
,”
Trans. ASME
,
46
, pp.
253
285
.
4.
Emmet
,
W. L. R.
,
1937
, “
Status of the Emmet Mercury-Vapor Process
,”
Mech. Eng.
,
59
, p.
840
.
5.
Birnbaum
,
U.
,
Bongartz
,
R.
,
Linssen
,
J.
,
Markewitz
,
P.
, and
Vögele
,
S.
,
2010
, “
Energietechnologien 2050—Schwerpunkte für Forschung und Entwicklung: Fossil basierte Kraftwerkstechnologien, Wärmetransport, Brennstoffzellen
,” Institut für Energieforschung, Jülich, Germany,
STE
Research Report No. 01/2010.
6.
Fraas
,
A.
,
1966
, “
A Potassium-Steam Binary Vapor Cycle for a Molten-Salt Reactor Power Plant
,”
ASME J. Eng. Power
,
88
(
4
), pp.
355
366
.
7.
Fraas
,
A.
,
1973
, “
A Potassium-Steam Binary Vapor Cycle for Better Fuel Economy and Reduced Thermal Pollution
,”
ASME J. Eng. Power
,
95
(
1
), pp.
53
63
.
8.
Zipkin
,
M.
, and
Schnetzer
,
E.
,
1960
, “
Design Compromises in Space Power Systems
,”
10th International Astronautical Congress London 1959
, F. Hecht, ed., Springer, Berlin, pp.
560
575
.
9.
Ewing
,
C. T.
,
Stone
,
J. P.
,
Spann
,
J. R.
, and
Miller
,
R. R.
,
1966
, “
High Temperature Properties of Potassium
,”
J. Chem. Eng. Data
,
11
(
4
), pp.
460
468
.
10.
Foust
,
O.
, ed.,
1972
,
Sodium-NaK Engineering Handbook
(Sodium Chemistry and Physical Properties), Vol.
1
,
Gordon and Breach
,
New York
.
11.
Collier
,
J.
,
Cox
,
R.
,
Evans
,
L.
, and
Bainbridge
,
G.
,
1974
, “
Potassium/Steam Cycle for a High Efficiency Gas-Cooled Reactor Power Station
,”
Electr. Rev.
,
195
(
16
), pp.
565
568
.
12.
Ganic
,
E.
, and
Seider
,
W.
,
1977
, “
Computer Simulation of Potassium-Steam Combined-Cycle, Electrical Power Plants
,”
Comput. Chem. Eng.
,
1
(
3
), pp.
161
169
.
13.
Rajakovics
,
G. E.
,
1974
, “
Extrem hohe Kraftwerkswirkungsgrade durch Dreifach-Dampfprozeß
,”
ÖZE
,
27
(
4
), pp.
102
126
(in German).
14.
Brockel
,
D.
,
1984
, “
Der Dreifachdampfprozeß
,”
VGB Kraftwerkstech.
,
64
(
3
), pp.
201
210
(in German).
15.
von Lojewski
,
D.
, and
Jansing
,
W.
,
1989
, “
Der Zweifachdampfprozeß: Ein wirtschaftliches Konzept der Zukunft?
,”
VGB Kraftwerkstech.
,
69
(
2
), pp.
138
147
(in German).
16.
Urban
,
H.
,
Haneke
,
R.
,
von Lojewski
,
D.
,
Mair
,
R.
,
Pannen
,
H.
,
Schiemann
,
W.
, and
Schulz
,
W.
,
1988
, “
Entwicklung eines Zweifach-Dampfprozesses mit Kalium-und Wasser-/Dampfkreislauf für Kohlekraftwerke (BRC Projekt)
,”
Federal Ministry for Research and Technology, Deutsche Babcock Werke
,
Oberhausen, Germany
.
17.
Teubner
,
H.
,
1992
, “
Entwicklung eines Zweifach-Dampfprozesses mit Kalium-und Wasser-/Dampfkreislauf—Teil 1: Kaliumtechnologie
,”
Federal Ministry for Research and Technology
,
Siemens, Bergisch Gladbach, Germany
.
18.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2006
, “
Binary and Ternary Liquid Metal-Steam Cycles for High-Efficiency Coal Power Stations
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
3
), pp.
195
205
.
19.
Saunderson
,
D. J.
, and
Budiman
,
R. A.
,
2011
, “
Analysis of Binary Cycle Efficiency Using Redlich-Kwong Equation of State
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
5
), pp.
567
578
.
20.
Woudstra
,
N.
,
Woudstra
,
T.
,
Pirone
,
A.
, and
van der Stelt
,
T.
,
2010
, “
Thermodynamic Evaluation of Combined Cycle Plants
,”
Energy Convers. Manage.
,
51
(
5
), pp.
1099
1110
.
21.
Effenberger
,
H.
,
2000
,
Dampferzeugung
,
Springer
,
Berlin
.
22.
Eisermann
,
W.
,
Johnson
,
P.
, and
Conger
,
W.
,
1980
, “
Estimating Thermodynamic Properties of Coal, Char, Tar and Ash
,”
Fuel Process. Technol.
,
3
(
1
), pp.
39
53
.
23.
Bakshi
,
B. R.
,
Gutowski
,
T. G.
, and
Sekulić
,
D. P.
, eds.,
2011
,
Thermodynamics and the Destruction of Resources
,
Cambridge University Press
,
New York
.
24.
Singer
,
J. G.
,
1991
,
Combustion Fossil Power
, 4th ed.,
Combustion Engineering
,
Windsor, CT
.
25.
Redieß
,
M.
,
Mandel
,
H.
, and
Klauke
,
U.
,
2010
, “
Effizienzsteigerung durch Retrofit an den Dampfturbinen der 500 MW-Blöcke der Vattenfall Europe Generation AG
,”
Flexibilitäts- und Effizienzsteigerung von Bestandskraftwerken
,
Spliethoff
,
H.
, ed.,
VDI Wissensforum
,
Düsseldorf, Germany
, pp.
41
54
.
26.
Linnenberg
,
S.
,
2013
, “
Optimierung der Auslegung und Untersuchung der Teillastfahrweise kohlebefeuerter Kraftwerke mit Post-Combustion CO2-Abtrennung
,” Ph.D. thesis, Technische Universität Hamburg-Harburg,
Hamburg
,
Germany
.
27.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
You do not currently have access to this content.