The solid waste generated from the apple juice industry (apple bagasse (AB)) was characterized as a fuel, and the potential for its utilization as an alternative energy source was assessed through its combustion in a pilot scale cyclone combustor. A comparative evaluation of the AB and sawdust (SD) properties, as well as of the emissions during the combustion tests, was performed. The high energy content of AB (lower heating value (LHV) equal to 21.09MJkg1), dry and ash-free (daf) basis, which is 26.9% higher than the LHV of SD (16.62MJkg1, daf), and combined with the high volatile matter content (85.36wt%, daf) improve the ignition and burning of the solids. The emissions of CO, SO2, and NOx and the total organic carbon (TOC) were compared with guideline limits established by Brazilian and international legislation. AB generated much lower CO than sawdust in spite of almost half of excess air levels (13% compared with 26%) and met even the stringent limit of the German regulation for waste incineration. The unburned carbon percentages found in the ash resulted from SD and AB combustion tests were 0.24% and 0.96% in weight, respectively. The absence of sulfur in AB composition represents an advantage with nondetectable SO2. The average level of NOx emission with SD combustion was 242mgNm3 and met all the regulation limits. The average NOx emission with AB combustion though was 642mgNm3 and met the U.S. EPA regulation but was marginally higher than the Brazilian norm by 15%. TOC concentrations remained below the limits considered even though the TOC level was higher in the AB combustion test. Polycyclic aromatic hydrocarbons (PAH) were not detected or were under the quantification limit of the equipment used in their analysis. Comparing the properties, the burning profiles of SD and AB, and the emissions from their combustion tests, it can be stated that the waste originating from the apple juice industry is suitable for direct combustion, constituting a renewable energy source for this industrial sector.

1.
Khan
,
A. A.
,
Aho
,
M.
,
de Jong
,
W.
,
Vainikka
,
P.
,
Jansens
,
P. J.
, and
Spliethoff
,
H.
, 2008, “
Scale-Up Study on Combustibility and Emission Formation With Two Biomass Fuels (B Quality Wood and Pepper Plant Residue) Under BFB Conditions
,”
Biomass Bioenergy
0961-9534,
32
, pp.
1311
1321
.
2.
Yin
,
C.
,
Rosendahl
,
L. A.
, and
Kær
,
S. K.
, 2008, “
Grate-Firing of Biomass for Heat and Power Production
,”
Prog. Energy Combust. Sci.
0360-1285,
34
, pp.
725
754
.
3.
Khan
,
A. A.
,
de Jong
,
W.
,
Jansens
,
P. J.
, and
Spliethoff
,
H.
, 2009, “
Biomass Combustion in Fluidized Bed Boilers: Potential Problems and Remedies
,”
Fuel Process. Technol.
0378-3820,
90
, pp.
21
50
.
4.
Griffiths
,
A. J.
,
Syred
,
N.
, and
Fick
,
W.
, 2000, “
A Review of Biomass and Associated Work at Cardiff Relating to Small Scale Heat and Power Systems
,”
IFRF Combustion Journal
0002-7820,
2000
, pp.
1
40
.
5.
Madhiyanon
,
T.
,
Lapirattanakun
,
A.
,
Sathitruangsak
,
P.
, and
Soponronnarit
,
S.
, 2006, “
A Novel Cyclonic Fluidized-Bed Combustor (ψ-FBC): Combustion and Thermal Efficiency, Temperature Distributions, Combustion Intensity, and Emission of Pollutants
,”
Combust. Flame
0010-2180,
146
, pp.
232
245
.
6.
Eiamsa-ard
,
S.
,
Kaewkohkiat
,
Y.
,
Lelaphatikul
,
W.
,
Thianpong
,
C.
, and
Promvonge
,
P.
, 2008, “
Experimental Investigation of Combustion Characteristics in a Multi-Staging Vortex Combustor Firing Rice Husk
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
139
148
.
7.
Floriani
,
S. L.
,
Virmond
,
E.
,
Althoff
,
C. A.
,
Moreira
,
R. F. P. M.
, and
José
,
H. J.
, 2010, “
Potential of Industrial Solid Wastes as an Energy Source and Gaseous Emissions Evaluation in a Pilot Scale Burner (ES2008–54355)
,”
ASME J. Energy Resour. Technol.
0195-0738,
132
(
1
), pp.
011003
.
8.
Werther
,
J.
,
Saenger
,
M.
,
Hartge
,
E. -U.
,
Ogada
,
T.
, and
Siagi
,
Z.
, 2000, “
Combustion of Agricultural Residues
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
1
27
.
9.
Demirbas
,
A.
, 2004, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
30
(
2
), pp.
219
230
.
10.
Demirbas
,
A.
, 2005, “
Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues
,”
Prog. Energy Combust. Sci.
0360-1285,
31
, pp.
171
192
.
11.
Obernberger
,
I.
,
Brunner
,
T.
, and
Bärnthaler
,
G.
, 2006, “
Chemical Properties of Solid Biofuels–Significance and Impact
,”
Biomass Bioenergy
0961-9534,
30
, pp.
973
982
.
12.
Lora
,
E. S.
, and
Andrade
,
R. V.
, 2009, “
Biomass as Energy Source in Brazil
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
, pp.
777
788
.
13.
The Brazilian Ministry of Agriculture, Livestock and Food Supply
, “
Production, Area and Average Yield: IBGE–Municipal Agricultural Production (PAM 1990 to 2004)
,” http://www.agricultura.gov.br/pls/portal/docs/page/mapa/estatisticas/agricultura_em_numeros_2005/03.01.09_1.xlshttp://www.agricultura.gov.br/pls/portal/docs/page/mapa/estatisticas/agricultura_em_numeros_2005/03.01.09_1.xls
14.
Zheng
,
G.
, and
Kozinski
,
J. A.
, 2000, “
Thermal Events Occurring During the Combustion of Biomass Residue
,”
Fuel
0016-2361,
79
, pp.
181
192
.
15.
Senneca
,
O.
, 2007, “
Kinetics of Pyrolysis, Combustion and Gasification of Three Biomass Fuels
,”
Fuel Process. Technol.
0378-3820,
88
, pp.
87
97
.
16.
Zabaniotou
,
A. A.
,
Kantarelis
,
E. K.
, and
Theodoropoulos
,
D. C.
, 2008, “
Sunflower Shells Utilization for Energetic Purposes in an Integrated Approach of Energy Crops: Laboratory Study Pyrolysis and Kinetics
,”
Bioresour. Technol.
0960-8524,
99
, pp.
3174
3181
.
17.
Di Blasi
,
C.
,
Buonanno
,
F.
, and
Branca
,
C.
, 1999, “
Reactivities of Some Biomass Chars in Air
,”
Carbon
0008-6223,
37
, pp.
1227
1238
.
18.
Heikkinen
,
J. M.
,
Hordijk
,
W.
,
de Jong
,
W.
, and
Spliethoff
,
H.
, 2004, “
Thermogravimetry as a Tool to Classify Waste Components to be Used for Energy Generation
,”
J. Anal. Appl. Pyrolysis
0165-2370,
71
, pp.
883
900
.
19.
Guerrero
,
M.
,
Ruiz
,
M. P.
,
Alzueta
,
M. U.
,
Bilbao
,
R.
, and
Millera
,
A.
, 2005, “
Pyrolysis of Eucalyptus at Different Heating Rates: Studies of Char Characterization and Oxidative Reactivity
,”
J. Anal. Appl. Pyrolysis
0165-2370,
74
, pp.
307
314
.
20.
Bridgeman
,
T. G.
,
Jones
,
J. M.
,
Shield
,
I.
, and
Williams
,
P. T.
, 2008, “
Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties
,”
Fuel
0016-2361,
87
, pp.
844
856
.
21.
Chagger
,
H. K.
,
Kendall
,
A.
,
Mcdonald
,
A.
,
Pourkashanian
,
M.
, and
Williams
,
A.
, 1998, “
Formation of Dioxins and Other Semi-Volatile Organic Compounds in Biomass Combustion
,”
Appl. Energy
0306-2619,
60
, pp.
101
114
.
22.
Kumar
,
A.
,
Purohit
,
P.
,
Rana
,
S.
, and
Kandpal
,
T. C.
, 2002, “
An Approach to the Estimation of the Value of Agricultural Residues Used as Biofuels
,”
Biomass Bioenergy
0961-9534,
22
, pp.
195
203
.
23.
McKay
,
G.
, 2002, “
Dioxin Characterization, Formation and Minimization During Municipal Solid Waste (MSW) Incineration
,”
Chem. Eng. J.
0300-9467,
86
, pp.
343
368
.
24.
Stanmore
,
B. R.
, 2004, “
The Formation of Dioxins in Combustion Systems—A Review
,”
Combust. Flame
0010-2180,
136
, pp.
398
427
.
25.
Watanabe
,
N.
,
Yamamoto
,
O.
,
Sakai
,
M.
, and
Fukuyama
,
J.
, 2004, “
Combustible and Incombustible Speciation of Cl and S in Various Components of Municipal Solid Waste
,”
Waste Manage.
0956-053X,
24
, pp.
623
632
.
26.
Skodras
,
G.
,
Palladas
,
A.
, and
Sakellaropoulos
,
G. P.
, 2007, “
Cleaner Co-Combustion of Lignite-Biomass-Waste Blends by Utilising Inhibiting Compounds of Toxic Emissions
,”
Chemosphere
0045-6535,
67
, pp.
S191
S197
.
27.
Mastral
,
A. M.
,
Callén
,
M. S.
, and
Garcia
,
T.
, 2000, “
Toxic Organic Emissions From Coal Combustion
,”
Fuel Process. Technol.
0378-3820,
67
, pp.
1
10
.
28.
Blumenstock
,
M.
,
Zimmermann
,
R.
,
Schramm
,
K. -W.
, and
Kettrup
,
A.
, 2000, “
Influence of Combustion Conditions on the PCDD/F-, PCB-, PCBz- and PAH-Concentrations in the Post-Combustion Chamber of a Waste Incineration Pilot Plant
,”
Chemosphere
0045-6535,
40
, pp.
987
993
.
29.
ASTM
, 1989, D3176 Standard Practice for Ultimate Analysis of Coal and Coke.
30.
DIN
, 2002, 51718 Testing of Solid Fuels–Determination of the Water Content and the Moisture of Analysis Sample.
31.
DIN
, 1997, 51719 Testing of Solid Fuels–Solid Mineral Fuels–Determination of Ash Content.
32.
DIN
, 2001, 51720 Testing of Solid Fuels–Determination of Volatile Matter Content.
33.
ASTM
, 2004, D5865 Standard Test Method for Gross Calorific Value of Coal and Coke.
34.
DIN
, 2000, 51900-1 Determining the Gross Calorific Value of Solid and Liquid Fuels Using the Bomb Calorimeter, and Calculation of Net Calorific Value—Part 1: General Information.
35.
DIN
, 2005, 51900-3 Testing of Solid and Liquid Fuels–Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of Net Calorific Value—Part 3: Method Using Adiabatic Jacket.
36.
Grotkjær
,
T.
,
Dam-Johansen
,
K.
,
Jensen
,
A. D.
, and
Glarborg
,
P.
, 2003, “
An Experimental Study of Biomass Ignition
,”
Fuel
0016-2361,
82
, pp.
825
833
.
37.
Virmond
,
E.
,
Schacker
,
R. L.
,
Albrecht
,
W.
,
Althoff
,
C. A.
,
Souza
,
M.
,
Moreira
,
R. F. P. M.
, and
Jose
,
H. J.
, “
Organic Solid Waste Originating From the Meat Processing Industry as an Alternative Energy Source
,”
Energy
0360-5442, in press.
38.
U.S. EPA
, “
Method 1—Sample and Velocity Traverses for Stationary Sources
,” http://www.epa.gov/ttn/emc/promgate/m-01.pdfhttp://www.epa.gov/ttn/emc/promgate/m-01.pdf
39.
U.S. EPA
, “
Compendium Method TO 17—Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tube
,” http://www.epa.gov/ttnamti1/files/ambient/airtox/to-17r.pdfhttp://www.epa.gov/ttnamti1/files/ambient/airtox/to-17r.pdf
40.
U.S. EPA
, 1999, “
Compendium Method TO 13A—Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS)
,” http://www.epa.gov/ttn/amtic/files/ambient/airtox/to-13arr.pdfhttp://www.epa.gov/ttn/amtic/files/ambient/airtox/to-13arr.pdf
41.
U.S. EPA
, 2005, Technical Guidance Note M16—The Measurement and Monitoring of Volatile Organic Compounds to Air From Industrial Installations.
42.
CONAMA
, 2002, “
Resolution 316, Ministry of the Environment (in Portuguese)
,” http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=338http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=338
43.
44.
2003, “
Ordinance on the Implementation of the Federal Emission Control Act—Ordinance for Combustion and Co-Combustion of Wastes of August 14 and 17, 2003
,”
Siebzehnte Verordnung zur Durchführung des Bundes: Immissionsschutzgesetzes. Verordnung über die Verbrennung und die Mitverbrennung von Abfällen, BlmSchV
,
Bundesanzeiger
,
Bonn, Germany
, in German.
45.
2002, The Danish EPA Guidelines for Air Emission Regulation No. 1/2002, Limitation of Air Pollution From Installations.
You do not currently have access to this content.