Abstract

Hybrid bonding is the technology for interchip ultrahigh-density interconnect at pitch smaller than 10 μm. The feasibility at wafer-to-wafer level bonding with bond pad pitch of sub-0.5 μm has been demonstrated with scaling limitations under exploration beyond sub-0.4 μm. The heterogeneous integration of chiplets often requires die-to-wafer hybrid bonding for diverse chip stacking architectures. This overview emphasis on some main issues associated with hybrid bonding extending to die-to-wafer level. The hybrid bond pad structure design is a critical factor affecting sensitivity to overlay accuracy, copper recess or protrusion requirements, and performances. Cases of hybrid bonding schemes and pad structure designs are summarized and analyzed. Performance assessment and characterization methods are briefly overviewed. The scalability of pad pitch is addressed by analyzing the recent literature reports. Challenges of managing singulated dies for die-to-wafer bonding with direct placement or collective die-to-wafer bonding schemes under exploration are addressed. Nonetheless, industry collaboration for manufacturing equipment development and industry standards on handling chiplets from different technology nodes and different factories are highlighted.

References

1.
Kagawa
,
Y.
,
Hida
,
S.
,
Kobayashi
,
Y.
,
Takahashi
,
K.
,
Miyanomae
,
S.
,
Kawamura
,
M.
,
Kawashima
,
H.
, et al.,
2019
, “
The Scaling of Cu-Cu Hybrid Bonding for High Density 3D Chip Stacking
,”
IEEE 2019 EDTM
, Singapore, Mar. 12–15, pp.
297
299
.10.1109/EDTM.2019.8731186
2.
Kagawa
,
Y.
,
Fujii
,
N.
,
Aoyagi
,
K.
,
Kobayashi
,
Y.
,
Nishi
,
S.
,
Todaka
,
N.
,
Takeshita
,
S.
, et al.,
2016
, “
Novel Stacked CMOS Image Sensor With Advanced Cu2Cu Hybrid Bonding
”,
IEEE IEDM 2016
, San Francisco, CA, Dec. 7–9, pp.
208
211
.10.1109/IEDM.2016.7838375
3.
Kagawa
,
Y.
,
Kamibayashi
,
T.
,
Fujii
,
N.
,
Furuse
,
S.
,
Yamada
,
T.
,
Hirano
,
T.
, and
Iwamoto
,
H.
,
2023
, “
Cu-Cu Wiring: The Novel Structure of Cu-Cu Hybrid Bonding
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
103
108
.10.1109/ECTC51909.2023.00026
4.
Kagawa
,
Y.
,
Hashiguchi
,
H.
,
Kamibayashi
,
T.
,
Haneda
,
M.
,
Fujii
,
N.
,
Furuse
,
S.
,
Hirano
,
T.
, and
Iwamoto
,
H.
,
2020
, “
Impacts of Misalignment on 1 μm Pitch Cu-Cu Hybrid Bonding
,”
IEEE International Interconnect Technology Conference (IITC)
, San Jose, CA, Oct. 5–9, pp.
148
150
.10.1109/IITC47697.2020.9515663
5.
Oike
,
Y.
,
2022
, “
Evolution of Image Sensor Architectures With Stacked Device Technologies
,”
IEEE Trans. Electron Devices
,
69
(
6
), pp.
2757
2765
.10.1109/TED.2021.3097983
6.
Lu
,
M.-C.
,
2022
, “
Advancement of Chip Stacking Architectures and Interconnect Technologies for Image Sensors
,”
ASME J. Electron. Packag.
,
144
(
2
), p.
020801
.10.1115/1.4052069
7.
Chen
,
Y. H.
,
Yang
,
C. A.
,
Kuo
,
C. C.
,
Chen
,
M. F.
,
Tung
,
C. H.
,
Chiou
,
W. C.
, and
Yu
,
D.
,
2020
, “
Ultra High Density SoIC With Sub-Micron Bond Pitch
,”
IEEE 70th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 3, pp.
576
581
.10.1109/ECTC32862.2020.00096
8.
Yu
,
D. C. H.
,
2017
, “
Advanced Heterogeneous Integration Technology Trend for Cloud and Edge
,”
IEEE Electron Devices Technology and Manufacturing Conference (EDTM)
,
Toyama, Japan
, Feb. 28–Mar. 2, pp.
4
5
.10.1109/EDTM.2017.7947598
9.
Yolanda
,
D. B. L.
,
2022
, “
Wafer to Wafer Bonding to Increase Memory Density
,”
China Semiconductor Technology International Conference (CSTIC)
,
Shanghai, China
, June 14–July 12, pp.
1
4
.10.1109/CSTIC55103.2022.9856846
10.
Yu
,
D. C. H.
,
Wang
,
C.-T.
, and
Hsia
,
H.
,
2021
, “
Foundry Perspectives on 2.5D/3D Integration and Roadmap
,”
IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
, Dec. 11–15, Paper No. IEDM21-76.10.1109/IEDM19574.2021.9720568
11.
Lu
,
N.
,
2020
, “
A New Smart-MicroSystems Age Enabled by Heterogeneous Integration of Silicon-Centric and AI Technologies – My Personal View
,”
International Symposium on Semiconductor Manufacturing (ISSM)
, Tokyo, Japan, Dec. 15–16, pp.
1
4
.10.1109/ISSM51728.2020.9377502
12.
Ouyang
,
Y.
,
Yang
,
S.
,
Yin
,
D.
,
Huang
,
X.
,
Wang
,
Z.
,
Yang
,
S.
,
Han
,
K.
, and
Xia
,
Z.
,
2021
, “
Excellent Reliability of XtackingTM Bonding Interface
,”
IEEE International Reliability Physics Symposium (IRPS)
,
Monterey, CA
, Mar. 21–25, pp.
1
6
.10.1109/IRPS46558.2021.9405115
13.
Chia
,
H.-J.
,
Tai
,
S.-P.
,
Cui
,
J. J.
,
Wang
,
C.-T.
,
Tung
,
C.-H.
,
Yee
,
K.-C.
, and
Yu
,
D. C. H.
,
2023
, “
Ultra High-Density Low Temperature SoIC With Sub-0.5 μm Bond Pitch
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
1
4
.10.1109/ECTC51909.2023.00008
14.
Chen
,
R.
,
Weckx
,
P.
,
Salahuddin
,
S. M.
,
Kim
,
S.-W.
,
Sisto
,
G.
,
Van der Plas
,
G.
,
Stucchi
,
M.
, et al.,
2020
, “
3D-Optimized SRAM Macro Design and Application to Memory-on-Logic 3D-IC at Advanced Nodes
,”
IEEE IEDM
, San Francisco, CA, Dec. 12–18, Paper No. IEDM20-307.10.1109/IEDM13553.2020.9371905
15.
Park
,
J.
,
Lee
,
B.
,
Lee
,
H.
,
Lim
,
D.
,
Kang
,
J.
,
Cho
,
C.
,
Na
,
M.
, and
Jin
,
I.
,
2022
, “
Wafer to Wafer Hybrid Bonding for DRAM Applications
,”
IEEE 72nd Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
, May 31–June 3, pp.
127
129
.10.1109/ECTC51906.2022.00030
16.
Bai
,
F.
,
Jiang
,
X.
,
Wang
,
S.
,
Yu
,
B.
,
Tan
,
J.
,
Zuo
,
F.
,
Wang
,
C.
, et al.,
2020
, “
A Stacked Embedded DRAM Array for LPDDR4/4X Using Hybrid Bonding 3D Integration With 34GB/s/1 Gb 0.88pJ/b Logic-to-Memory Interface
,”
IEEE International Electron Device Meeting (IEDM)
, San Francisco, CA, Dec. 14–18, Paper No. IEDM20-124.10.1109/IEDM13553.2020.9372039
17.
Chen
,
M. F.
,
Lin
,
C. S.
,
Liao
,
E. B.
,
Chiou
,
W. C.
,
Kuo
,
C. C.
,
Hu
,
C. C.
,
Tsai
,
C. H.
,
Wang
,
C. T.
, and
Yu
,
D.
,
2020
, “
SoIC for Low-Temperature, Multi-Layer 3D Memory Integration
,”
IEEE 70th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 3, pp.
855
860
.10.1109/ECTC32862.2020.00139
18.
Ma
,
K.
,
Bekiaris
,
N.
,
Ramaswam
,
S.
,
Ding
,
T.
,
Probst
,
G.
,
Burggraf
,
J.
, and
Uhrmann
,
T.
,
2020
, “
0.5 μm Pitch Wafer-to-Wafer Hybrid Bonding With SiCN Bonding Interface for Advanced Memory
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 3, pp.
1110
1114
.10.1109/ECTC51909.2023.00190
19.
Netzband
,
C.
,
Ryan
,
K.
,
Mimura
,
Y.
,
Ilseok
,
S.
,
Aizawa
,
H.
,
Ip
,
N.
,
Chen
,
X.
,
Fukushima
,
H.
, and
Tan
,
S.
,
2023
, “
0.5 μm Pitch Next Generation Hybrid Bonding With High Alignment Accuracy for 3D Integration
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 2, pp.
1100
1104
.10.1109/ECTC51909.2023.00188
20.
Sherwood
,
T.
,
Sreenivasan
,
R.
,
Appell
,
J.
,
Patlolla
,
R.
,
Li
,
K.
,
Ahn
,
K. C.
,
Salfelder
,
J.
, et al.,
2023
, “
Aggressive Pitch Scaling (Sub-0.5 μm) of W2W Hybrid Bonding Through Process Innovations
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
13
18
.10.1109/ECTC51909.2023.00010
21.
Lau
,
J.
,
2021
,
Semiconductor Advanced Packaging
,
Springer
,
Singapore
.
22.
Beyne
,
E.
,
Kim
,
S. W.
,
Peng
,
L.
,
Heylen
,
N.
,
De Messemaeker
,
J.
,
Okudur
,
O. O.
,
Phommahaxay
,
A.
, et al.,
2017
, “
Scalable, Sub 2 μm Pitch, Cu/SiCN to Cu/SiCN Hybrid Wafer-to-Wafer Bonding Technology
,”
IEEE IEDM
, San Francisco, CA, Dec. 2–6, Paper No. IEDM17-729.10.1109/IEDM.2017.8268486
23.
Gao
,
G.
,
Mirkarimi
,
L.
,
Workman
,
T.
,
Guevara
,
G.
,
Theil
,
J.
,
Uzoh
,
C.
,
Fountain
,
G.
, et al.,
2018
, “
Development of Low Temperature Direct Bond Interconnect Technology for Die-to-Wafer and Die-to-Die Applications – Stacking, Yield Improvement, Reliability Assessment
,”
Proceedings of the International Wafer-Level Packaging Conference (iWLPC)
,
San Jose CA
, Oct.
23
25
.10.23919/IWLPC.2018.8573278
24.
Suhard
,
S.
,
Phommahaxay
,
A.
,
Kennes
,
K.
,
Bex
,
P.
,
Fodor
,
F.
,
Liebens
,
M.
,
Slabbekoorn
,
J.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2020
, “
Demonstration of a Collective Hybrid Die-to-Wafer Integration
,”
IEEE ECTC 2020
, San Diego, CA, May 30–June 3, pp.
1315
1321
.10.1109/ECTC32696.2021.00325
25.
Shigetou
,
A.
,
Itoh
,
T.
,
Sawada
,
K.
, and
Suga
,
T.
,
2008
, “
Bumpless Interconnect of 6-m-Pitch Cu Electrodes at Room Temperature
,”
IEEE Trans. Adv. Packag.
,
31
(
3
), pp.
473
478
.10.1109/TADVP.2008.920644
26.
Shigetou
,
A.
,
Itoh
,
T.
,
Matsuo
,
M.
,
Hayasaka
,
N.
,
Okumura
,
K.
, and
Suga
,
T.
,
2006
, “
Bumpless Interconnect Through ultrafine cu Electrodes by Means of Surface-Activated Bonding (SAB) Method
,”
IEEE Trans. Adv. Packag.
,
29
(
2
), pp.
218
226
.10.1109/TADVP.2006.873138
27.
Liu
,
F.
,
Yu
,
R. R.
,
Young
,
A. M.
,
Doyle
,
J. P.
,
Wang
,
X.
,
Shi
,
L.
,
Chen
,
K.-N.
, et al.,
2008
, “
A 300-mm Wafer-Level Three-Dimensional Integration Scheme Using Tungsten Through-Silicon Via and Hybrid Cu-Adhesive Bonding
,”
IEEE International Electron Devices Meeting
,
San Francisco, CA
, Dec. 15–17, pp.
1
4
.10.1109/IEDM.2008.4796762
28.
Chen
,
K.-N.
,
Xu
,
Z.
, and
Jian-Qiang Lu
,
J.-Q.
,
2011
, “
Demonstration and Electrical Performance Investigation of Wafer-Level Cu Oxide Hybrid Bonding Schemes
,”
IEEE Electron Device Lett.
,
32
(
8
), pp.
1119
1121
.10.1109/LED.2011.2157657
29.
Amandine
,
J.
,
Sanchez
,
L.
,
Castan
,
C.
,
Laugier
,
M.
,
Rolland
,
E.
,
Montmayeul
,
B.
,
Franiatte
,
R.
,
Fournel
,
F.
, and
Cheramy
,
S.
,
2019
, “
Self-Assembly Process for 3D Die-to-Wafer Using Direct Bonding: A Step Forward Toward Process Automatisation
,”
IEEE 69th Electronic Components and Technology Conference (ECTC)
,
Las Vegas, NV
, May 28–31, pp.
226
234
.10.1109/ECTC.2019.00041
30.
Bond
,
A.
,
Bourjot
,
E.
,
Borel
,
S.
,
Enot
,
T.
,
Montmeat
,
P.
,
Sanchez
,
L.
,
Fournel
,
F.
, and
Swan
,
J.
,
2022
, “
Collective Die-to-Wafer Self-Assembly for High Alignment Accuracy and High Throughput 3D Integration
,”
IEEE 72nd Electronic Components and Technology Conference (ECTC)
, San Diego, CA, May 31–June 3, pp.
168
176
.10.1109/ECTC51906.2022.00037
31.
Schutte
,
C.
, and
Moreno
,
D.
,
2020
, “
EV Group Addresses Key Process Gap in Heterogeneous Integration With Collective Die-to-Wafer Hybrid and Fusion Bonding Demonstrations
,”
EVG Press Release
,
St Florian, Austria
, Oct. 19, pp.
1
2
.
32.
Brandstätter
,
B.
,
Aschenwald
,
D.
,
Auer
,
B.
,
Bilewicz
,
N.
,
Boomsma
,
R.
,
Kröll
,
C.
,
Mayr
,
A.
, et al.,
2020
, “
High-Speed Ultra-Accurate Direct C2W Bonding
,”
IEEE 70th ECTC
, Orlando, FL, May 30–June 3, pp.
1943
1949
.10.1109/ECTC32862.2020.00303
33.
Mitsuishi
,
H.
,
Mori
,
H.
,
Maeda
,
H.
,
Ushijima
,
M.
,
Aramata
,
M.
,
Fukuda
,
M.
,
Okada
,
M.
,
Kanbayashi
,
M.
,
Shimoda
,
T.
, and
Sugaya
,
I.
,
2022
, “
Demonstration of 50 nm Overlay Accuracy for Wafer-to-Wafer Bonding and Further Improvement Study
,”
IEEE Electronics Packaging Technology Conference (EPTC)
,
Singapore
, Dec. 7–9, pp.
228
343
.10.1109/EPTC56328.2022.10013152
34.
Shigetou
,
A.
,
Itoh
,
T.
, and
Suga
,
T.
,
2005
, “
Direct Bonding of CMP-Cu Films by Surface Activated Bonding (SAB) Method
,”
J. Mater. Sci.
,
40
(
12
), pp.
3149
3154
.10.1007/s10853-005-2677-1
35.
Elsherbini
,
A.
,
Jun
,
K.
,
Vreeland
,
R.
,
Brezinski
,
W.
,
Niazi
,
H. K.
,
Shi
,
Y.
,
Yu
,
Q.
, et al.,
2021
, “
Enabling Hybrid Bonding on Intel Process
,”
IEEE 2021 IEDM
,
San Francisco, CA
, Dec. 11–15, Paper No. IEDM21-729.10.1109/IEDM19574.2021.9720586
36.
Elsherbini
,
A.
,
Jun
,
K.
,
Liff
,
S.
,
Talukdar
,
T.
,
Bielefeld
,
J.
,
Li
,
W.
,
Vreeland
,
R.
, et al.,
2022
, “
Enabling Next Generation 3D Heterogeneous Integration Architectures on Intel Process
,”
IEEE 2022 IEDM
,
San Francisco, CA
, Dec. 3–7, pp.
631
634
.10.1109/IEDM45625.2022.10019499
37.
Mitsuishi
,
H.
,
Mori
,
H.
,
Maeda
,
H.
,
Ushijima
,
M.
,
Kamashita
,
A.
,
Okada
,
M.
,
Aramata
,
M.
, et al.,
2023
, “
50 nm Overlay Accuracy for Wafer-to-Wafer Bonding by High-Precision Alignment Technologies
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
1664
1671
.10.1109/ECTC51909.2023.00283
38.
Lin
,
T.-C.
,
Liang
,
C.-L.
,
Wang
,
S. B.
,
Lin
,
Y. S.
,
Kao
,
C. L.
,
Tarng
,
D.
, and
Lin
,
K. L.
,
2021
, “
Inhibiting the Detrimental Cu Protrusion in Cu Through-Silicon-Via by Highly (111)-Oriented Nano-Twinned Cu
,”
Scr. Mater.
,
197
, p.
113782
.10.1016/j.scriptamat.2021.113782
39.
Juang
,
J. Y.
,
Lu
,
C. L.
,
Chen
,
K. J.
,
Chen
,
C. C.
,
Hsu
,
P. N.
,
Chen
,
C.
, and
Tu
,
K. N.
,
2018
, “
Copper-to-Copper Direct Bonding on Highly (111)-Oriented Nano Twinned Copper in No-Vacuum Ambient
,”
Sci. Rep.
,
8
(
1
), p.
13910
.10.1038/s41598-018-32280-x
40.
Chang
,
S. Y.
,
Chu
,
Y. C.
,
Tu
,
K. N.
, and
Chen
,
C.
,
2021
, “
Effect of Anisotropic Grain Growth on Improving the Bonding Strength of -Oriented Nanotwinned Copper Films
,”
Mater. Sci. Eng.: A
,
804
, p.
140754
.10.1016/j.msea.2021.140754
41.
Lin
,
P. F.
,
Tran
,
D. P.
,
Liu
,
H. C.
,
Li
,
Y. Y.
, and
Chen
,
C.
,
2022
, “
Interfacial Characterization of Low-Temperature Cu-to-Cu Direct Bonding With Chemical Mechanical Planarized Nanotwinned Cu Films
,”
Materials
,
15
(
3
), p.
937
.10.3390/ma15030937
42.
Fan
,
J.
,
Lim
,
D. F.
, and
Tan
,
C. S.
,
2013
, “
Effects of Surface Treatment on the Bonding Quality of Wafer-Level Cu-to-Cu Thermo-Compression Bonding for 3D Integration
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045025
.10.1088/0960-1317/23/4/045025
43.
Sahoo
,
K.
,
Ren
,
H.
, and
Iyer
,
S. S.
,
2023
, “
A High Throughput Two-Stage Die-to-Wafer Thermal Compression Bonding Scheme for Heterogeneous Integration
,”
IEEE 73rd Electronic Components Technology Conference (ECTC)
, Orlando Fl, May 30–June 2, pp.
362
366
.10.1109/ECTC51909.2023.00067
44.
Despont
,
M.
,
Drechsler
,
U.
,
Yu
,
R.
,
Pogge
,
H. B.
, and
Vettiger
,
P.
,
2003
, “
Waferscale Microdevice Transfer/Interconnect: From a New Integration Method to Its Application in an Afm-Based Data-Storage System
,”
TRANSDUCERS ‘03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers
, Boston, MA, June 8–12, Vol.
2
, pp.
1907
1910
.10.1109/SENSOR.2003.1217164
45.
Kim
,
S. W.
,
Detalle
,
M.
,
Peng
,
L.
,
Nolmans
,
P.
,
Heylen
,
N.
,
Velenis
,
D.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2016
, “
Ultra-Fine Pitch 3D Integration Using Face-to-Face Hybrid Wafer Bonding Combined With a Via-Middle Through-Silicon-Via Process
,”
IEEE 66th Electronic Components and Technology Conference
, Las Vegas, NV, May 31–June 3, pp.
1179
1185
.10.1109/ECTC.2016.205
46.
Kim
,
M.-K.
,
Park
,
S.
,
Jang
,
A.
,
Lee
,
H.
,
Baek
,
S.
,
Lee
,
C. S.
,
Kim
,
I.
,
Park
,
J.
,
Jee
,
Y.
,
Kang
,
U.-B.
, and
Kim
,
D.-W.
,
2022
, “
Characterization of Die-to-Wafer Hybrid Bonding Using Heterogeneous Dielectrics
,”
IEEE 72nd Electronic Components and Technology Conference
,
San Diego, CA
, May 31–June 3, pp.
335
339
.10.1109/ECTC51906.2022.00062
47.
Dubey
,
V.
,
Wünsch
,
D.
,
Gottfried
,
K.
,
Wiemer
,
M.
,
Fischer
,
T.
,
Schermer
,
S.
,
Dittmar
,
N.
, et al.,
2023
, “
Impact of Dielectric and Copper Via Design on Wafer-to-Wafer Hybrid Bonding
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
795
799
.10.1109/ECTC51909.2023.00138
48.
Taibi
,
R.
,
Di Cioccio
,
L.
,
Chappaz
,
C.
,
Francou
,
M.
,
Dechamp
,
J.
,
Larre
,
P.
,
Moreau
,
S.
,
Chapelon
,
L.-L.
, and
Fortunier
,
R.
,
2011
, “
Investigation of Stress Induced Voiding and Electromigration Phenomena on Direct Copper Bonding Interconnects for 3D Integration
,”
IEEE, 2011 IEDM
,
Washington, DC
, Dec. 5–7, Paper No. IEDM11-135.10.1109/IEDM.2011.6131502
49.
Fisher
,
D.
,
Knickerbocker
,
S.
,
Smith
,
D.
,
Katz
,
R.
,
Garant
,
J.
,
Lubguban
,
J.
,
Soler
,
V.
, and
Robson
,
N.
,
2020
, “
Face to Face Hybrid Wafer Bonding for Fine Pitch Applications
,”
IEEE 70th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 3, pp.
595
600
.10.1109/ECTC32862.2020.00099
50.
Jourdon
,
J.
,
Lhostis
,
S.
,
Moreau
,
S.
,
Chossat
,
J.
,
Arnoux
,
M.
,
Sart
,
C.
,
Henrion
,
Y.
, et al.,
2018
, “
Hybrid Bonding for 3D Stacked Image Sensors: Impact of Pitch Shrinkage on Interconnect Robustness
,”
IEEE IEDM
, San Francisco, CA, Dec. 1–5, Paper No. IEDM11-137.10.1109/IEDM.2018.8614570
51.
Lu
,
M. C.
,
2021
, “
Ultra-High-Density Interconnect Enabled by Hybrid Bonding for Heterogeneous Integration: Interfacial Characteristics
,”
ASME
Paper No. IPACK2021-73314.10.1115/IPACK2021-73314
52.
Cui
,
Z.
,
Chen
,
X.
,
Fan
,
X.
, and
Zhang
,
K.
,
2018
, “
Interfacial Properties of Cu/SiO2 Using a Multiscale Modelling Approach in Electronic Packages
,” 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,
EuroSimE 2018
, Toulouse, France, Apr. 15–18, pp.
1
4
.10.1109/EuroSimE.2018.8369949
53.
Gueguen
,
P.
,
Di Cioccio
,
L.
,
Gergaud
,
P.
,
Rivoire
,
M.
,
Scevola
,
D.
,
Zussy
,
M.
,
Charvet
,
A. M.
,
Bally
,
L.
,
Lafond
,
D.
, and
Clavelier
,
L.
,
2008
, “
Copper Direct Bonding Characterization and Its Interests for 3D Integration
,”
ECS Trans.
,
16
(
8
), pp.
31
37
.10.1149/1.2982851
54.
Sakuma
,
K.
,
Yu
,
R.
,
Belyansky
,
M.
,
Bergendahl
,
M. A.
,
Gomez
,
J.-M.
,
Skordas
,
S.
,
Knickerbocker
,
J.
, et al.,
2022
, “
Surface Energy Characterization for Die-Level Cu Hybrid Bonding
,”
IEEE 72nd Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
, May 31–June 3, pp.
312
316
.10.1109/ECTC51906.2022.00058
55.
Wang
,
L.
,
Fountain
,
G.
,
Lee
,
B.
,
Gao
,
G.
,
Uzoh
,
C.
,
McGrath
,
S.
,
Enquist
,
P.
,
A Rkalgud
,
S.
, and
Mirkarimi
,
L.
,
2017
, “
Direct Bond Interconnect (DBI®) for Fine-Pitch Bonding in 3D and 2.5D Integrated Circuits
,”
Pan Pacific Microelectronics Symposium
,
Kauai, HI
, Feb. 6–9.https://ieeexplore.ieee.org/document/7859568
56.
Gueguena
,
P.
,
Di Cioccioa
,
L.
,
Morfoulib
,
P.
,
Zussya
,
M.
,
Dechampa
,
J.
,
Ballya
,
L.
, and
Claveliera
,
L.
,
2010
, “
Copper Direct Bonding: An Innovative 3D Interconnect
,”
2010 IEEE ECTC
, Las Vegas, NV, June 1–4, pp.
878
883
.10.1109/ECTC.2010.5490697
57.
Jourdon
,
J.
,
Lhostis
,
S.
,
Moreau
,
S.
,
Bresson
,
N.
,
Salomé
,
P.
, and
Frémont
,
H.
, June
2019
, “
Evaluation of Hybrid Bonding Interface Quality by Contact Resistivity Measurement
,”
IEEE Trans. Electron Devices
,
66
(
6
), pp.
2699
2703
.10.1109/TED.2019.2910528
58.
Jani
,
I.
,
Lattard
,
D.
,
Vivet
,
P.
,
Arnaud
,
L.
,
Cheramy
,
S.
,
Beigné
,
E.
,
Farcy
,
A.
, et al.,
2019
, “
Characterization of Fine Pitch Hybrid Bonding Pads Using Electrical Misalignment Test Vehicle
,”
IEEE 69th Electronic Components and Technology Conference (ECTC)
,
Las Vegas, NV
, May 28–31, pp.
1926
1932
.10.1109/ECTC.2019.00272
59.
Workman
,
T.
,
Mirkarimi
,
L.
,
Theil
,
J.
,
Fountain
,
G.
,
Bang
,
K. M.
,
Lee
,
B.
,
Uzoh
,
C.
,
Suwito
,
D.
,
Gao
,
G.
, and
Mrozek
,
P.
,
2021
, “
Die to Wafer Hybrid Bonding and Fine Pitch Considerations
,”
IEEE 71st Electronic Components and Technology Conference (ECTC)
, San Diego, CA, June 1–4, pp.
2071
2077
.10.1109/ECTC32696.2021.00326
60.
Kuo
,
G.
,
Chen
,
C.-Y.
,
Hsieh
,
C.-C.
,
Lee
,
C.-J.
,
Wu
,
J.
,
Cui
,
J. J.
,
Kuo
,
Y.-L.
, et al.,
2023
, “
A Thermal Friendly Bonding Scheme for 3D System Integration
,”
IEEE 73rd Electronic Components Technology Conference (ECTC)
, Orlando, FL, May 30–June 2, pp.
1973
1976
.10.1109/ECTC51909.2023.00339
61.
Moreau
,
S.
,
Jourdon
,
J.
,
Lhostis
,
S.
,
Bouchu
,
D.
,
Ayoub
,
B.
,
Arnaud
,
L.
, and
Frémont
,
H.
,
2022
, “
Review—Hybrid Bonding-Based Interconnects: A Status on the Last Robustness and Reliability Achievements
,”
ECS J. Solid State Sci. Technol.
,
11
(
2
), p.
024001
.10.1149/2162-8777/ac4ffe
62.
Kim
,
S.-W.
,
Fodor
,
F.
,
Heylen
,
N.
,
Iacovo
,
S.
,
De Vos
,
J.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2020
, “
Novel Cu/SiCN Surface Topography Control for 1 μm Pitch Hybrid Wafer-to-Wafer Bonding
,”
IEEE 70th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 3, pp.
216
222
.10.1109/ECTC32862.2020.00046
63.
Ji
,
L.
,
Che
,
F. X.
,
Ji
,
H. M.
,
Li
,
H. Y.
,
Kawano
,
M.
, and
Member, IEEE
,
2020
, “
Wafer-to-Wafer Hybrid Bonding Development by Advanced Finite Element Modeling for 3-D IC Packages
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
12
), pp.
2106
2117
.10.1109/TCPMT.2020.3035652
64.
Ayoub
,
H.
,
Lhostis
,
S.
,
Moreau
,
S.
,
Souchier
,
E.
,
Deloffre
,
E.
,
Mermoz
,
S.
,
Cacho
,
M.
, et al.,
2022
, “
Sub 1 μm Pitch Achievement for Cu/SiO2 Hybrid Bonding
,”
IEEE Electronics Packaging Technology Conference (EPTC)
,
Singapore
, Dec. 7–9, pp.
418
424
.10.1109/EPTC56328.2022.10013180
65.
Fujino
,
M.
,
Takahashi
,
K.
,
Araga
,
Y.
, and
Kikuchi
,
K.
,
2020
, “
300 mm Wafer-Level Hybrid Bonding for Cu/Interlayer Dielectric Bonding in Vacuum
,”
Jpn. J. Appl. Phys.
,
59
(
SB
), p.
SBBA02
.10.7567/1347-4065/ab4b2b
66.
Fan
,
C. H.
,
Ng
,
H. P.
,
So
,
S. C.
,
Man
,
N. T.
,
Lee
,
C. Y.
,
Li
,
M.
,
Uhrmann
,
T.
,
Burggraf
,
J.
, and
Pires
,
M.
,
2023
, “
Direct Die to Wafer Cu Hybrid Bonding for Volume Production
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
91
96
.10.1109/ECTC51909.2023.00024
67.
Uhrmann
,
T.
,
Burggraf
,
J.
, and
Pires
,
M.
,
2021
, “
Die-to-Wafer Bonding Steps Into the Spotlight on a Heterogeneous Integration Stage
,”
EV Group
.https://www.3dincites.com/2021/05/die-to-waferbonding-steps-into-the-spotlight-on-a-heterogeneous-integration-stage/
68.
Mirkarimi
,
L.
,
Workman
,
T.
,
Theil
,
J.
,
Fountain
,
G.
,
Bang
,
K. M.
,
Zhao
,
O.
,
Lee
,
B.
,
Uzoh
,
C.
,
Suwito
,
D.
, and
Gao
,
G.
,
2023
, “
Fine Pitch Die-to-Wafer Hybrid Bonding
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
83
90
.10.1109/ECTC51909.2023.00023
69.
Zhou
,
W.
,
Kwon
,
M.
,
Chiu
,
Y.
,
Guo
,
H.
,
Bhushan
,
B.
,
Street
,
B.
,
Parekh
,
K.
, and
Singh
,
A.
,
2023
, “
Critical Challenges With Copper Hybrid Bonding for Chip-to-Wafer Memory Stacking
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 2, pp.
336
341
.10.1109/ECTC51909.2023.00063
70.
Inoue
,
F.
,
Teranishi
,
S.
,
Iwata
,
T.
,
Onishi
,
K.
,
Yamamoto
,
N.
,
Kawai
,
A.
,
Aoki
,
S.
,
Hare
,
T.
, and
Uedono
,
A.
,
2023
, “
Inorganic Temporary Direct Bonding for Collective Die to Wafer Hybrid Bonding
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
556
563
.10.1109/ECTC51909.2023.00099
71.
Bourjot
,
E.
,
Sanchez
,
L.
,
Fournel
,
F.
,
Bond
,
A.
,
Montméat
,
P.
,
Eid
,
F.
,
Nadi
,
N.
, et al.,
2023
, “
Integration and Process Challenges of Self Assembly Applied to Die-To-Wafer Hybrid Bonding
,”
IEEE 73rd Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
, May 30–June 2, pp.
1397
1402
.10.1109/ECTC51909.2023.00239
72.
Enquist
,
P.
,
Fountain
,
G.
,
Petteway
,
C.
,
Hollingsworth
,
A.
, and
Grady
,
H.
,
2009
, “
Low Cost of Ownership Scalable Copper Direct Bond Interconnect 3D IC Technology for Three Dimensional Integrated Circuit Applications
,”
IEEE 2009 International Conference on 3D System Integration
,
San Francisco, CA
, Sept. 28–30.10.1109/3DIC.2009.5306533
73.
Fukushima
,
T.
,
2010
, “
Evaluation of Alignment Accuracy on Chip-toWafer Self-Assembly and Mechanism on the Direct Chip Bonding at Room Temperature
,”
IEEE International 3D Systems Integration Conference (3DIC)
, Munich, Germany, Nov. 16–18, pp.
1
5
.10.1109/3DIC.2010.5751436
74.
Peng
,
L.
,
Kim
,
S.-W.
,
Iacovo
,
S.
,
Inoue
,
F.
,
Phommahaxay
,
A.
,
Sleeckx
,
E.
,
De Vos
,
J.
, et al.,
2018
, “
Advances in SiCN-SiCN Bonding With High Accuracy Wafer-to-Wafer (W2W) Stacking Technology
,”
IEEE International Interconnect Technology Conference (IITC)
,
Santa Clara, CA
, June 4–7, pp.
179
181
.10.1109/IITC.2018.8457072
75.
Chiu
,
W. L.
,
Lee
,
O. H.
,
Chiang
,
C. W.
, and
Chang
,
H. H.
,
2021
, “
Low Temperature Wafer-to-Wafer Hybrid Bonding by Nanotwinned Copper
,”
IEEE 71st Electronic Components and Technology Conference
, San Diego, CA, June 1–4, pp.
679
684
.10.1109/ECTC32696.2021.00068
76.
Liu
,
J.
,
Huang
,
Z.
,
Conway
,
P.
, and
Liu
,
Y.
,
2019
, “
Processing-Structure-Protrusion Relationship of 3-D Cu TSVs: Control at the Atomic Scale
,”
J. Electron Devices Soc.
,
7
, pp.
1270
1276
.10.1109/JEDS.2019.2947246
77.
Chiu
,
W.-L.
,
Lee
,
O.-H.
,
Kuo
,
T.-Y.
,
Lo
,
J.
,
Shih
,
C.-L.
,
Chiu
,
H.-Y.
, and
Chang
,
H.-H.
,
2023
, “
Low Temperature and Fine Pitch Nanocrystalline Cu/SiCN Wafer-to-Wafer Hybrid Bonding
,” IEEE 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30–June 2, pp.
1105
1109
.10.1109/ECTC51909.2023.00189
78.
Chew
,
S.-A.
,
Zhang
,
B.
,
Vanstreels
,
K.
,
Chery
,
V.
,
De Messemaeker
,
J.
,
Witters
,
L.
,
Van Sever
,
K.
, et al.,
2023
, “
The Challenges and Solutions of Cu/SiCN Wafer-to-Wafer Hybrid Bonding Scaling Down to 400 nm Pitch
,”
IEEE IEDM
, San Francisco, CA, Dec. 9–13, No.
13
6
.
You do not currently have access to this content.