Abstract

Autonomous vehicles are part of an expanding industry that encompasses various interdisciplinary fields such as dynamic controls, thermal engineering, sensors, data processing, and artificial intelligence. Exposure to extreme environmental conditions, such as changes to temperature and humidity, affects sensor performance. To address potential safety concerns related to sensor perception used in autonomous vehicles in extremely cold real-world situations, specifically Alaska, examination of frosts and water droplets impact on vehicle optical sensors is conducted in both real-world and laboratory-controlled settings. Machine learning models are utilized to determine the vision impediment levels. Potential hardware and software tools are then introduced as solutions for the environmental impacts. Through this research, a better understanding of the potential caveats and algorithm solutions can be suggested to improve autonomous driving, even under challenging weather conditions.

References

1.
Vargas
,
J.
,
Alsweiss
,
S.
,
Toker
,
O.
,
Razdan
,
R.
, and
Santos
,
J.
,
2021
, “
An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions
,”
Sensors
,
21
(
16
), p.
5397
.10.3390/s21165397
2.
Rosique
,
F.
,
Navarro
,
P. J.
,
Fernández
,
C.
, and
Padilla
,
A.
,
2019
, “
A Systematic Review of Perception System and Simulators for Autonomous Vehicles Research
,”
Sensors
,
19
(
3
), p.
648
.10.3390/s19030648
3.
Jokela
,
M.
,
Kutila
,
M.
, and
Pyykönen
,
P.
,
2019
, “
Testing and Validation of Automotive Point-Cloud Sensors in Adverse Weather Conditions
,”
Appl. Sci.
,
9
(
11
), p.
2341
.10.3390/app9112341
4.
Guldin
,
S.
,
Kohn
,
P.
,
Stefik
,
M.
,
Song
,
J.
,
Divitini
,
G.
,
Ecarla
,
F.
,
Ducati
,
C.
,
Wiesner
,
U.
, and
Steiner
,
U.
,
2013
, “
Self-Cleaning Antireflective Optical Coatings
,”
Nano Lett.
,
13
(
11
), pp.
5329
5335
.10.1021/nl402832u
5.
Peczonczyk
,
S.
,
Misovski
,
T.
,
Seubert
,
C.
,
Peters
,
C.
, and
Nichols
,
M.
,
2022
, “
Fouling and Cleaning of Transparent, Functional Coatings for Autonomous Vehicle Sensors
,”
SAE Int. J. Connected Autom. Veh.
,
5
, p.
3
.10.4271/12-05-03-0018
6.
Göktürk
,
K.
, and
Jönsson
,
A.
,
2019
,
Developing a Resource Efficient Sensor Cleaning System for Autonomous Heavy Vehicles
,
Master of Science, KTH Royal Institute of Technology
,
Stockholm, Sweden
.
7.
Milijkovic
,
N.
,
Preston
,
D. J.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Electrostatic Charging of Jumping Droplets
,”
Nat. Commun.
,
4
, p.
2517
.10.1038/ncomms3517
8.
Zhang
,
H.
,
De Poorter
,
J.
,
Mukherjee
,
R.
,
Boreyko
,
J. B.
, and
Qiao
,
R.
,
2021
, “
Thermoelectrics in Ice Slabs: Charge Dynamics and Thermovoltages
,”
Phys. Chem. Chem. Phys.
,
23
(
30
), pp.
16277
16288
.10.1039/D1CP02304G
9.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
Adv. Neural Inf. Process. Sys.
,
28
, pp.
91
99
.10.48550/arXiv.1506.01497
10.
Grossman
,
S.
,
Gaziv
,
G.
,
Yeagle
,
E. M.
,
Harel
,
M.
,
Mégevand
,
P.
,
Groppe
,
D. M.
,
Khuvis
,
S.
, et al.,
2019
, “
Convergent Evolution of Face Spaces Across Human Face-Selective Neuronal Groups and Deep Convolutional Networks
,”
Nat. Commun.
,
10
(
1
), p.
4934
.10.1038/s41467-019-12623-6
11.
Lio
,
G.
,
Fadda
,
R.
,
Doneddu
,
G.
,
Duhamel
,
J. R.
, and
Sirigu
,
A.
,
2019
, “
Digit-Tracking as a New Tactile Interface for Visual Perception Analysis
,”
Nat. Commun.
,
10
(
1
), p.
5392
.10.1038/s41467-019-13285-0
12.
Norouzzadeh
,
M. S.
,
Nguyen
,
A.
,
Kosmala
,
M.
,
Swanson
,
A.
,
Palmer
,
M. S.
,
Packer
,
C.
, and
Clune
,
J.
,
2018
, “
Automatically Identifying, Counting, and Describing Wild Animals in Camera-Trap Images With Deep Learning
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
25
), pp.
E5716
E5725
.10.1073/pnas.1719367115
13.
Geng
,
Z.
, and
Wang
,
Y. F.
,
2020
, “
Automated Design of a Convolutional Neural Network With Multi-Scale Filters for Cost-Efficient Seismic Data Classification
,”
Nat. Commun.
,
11
(
1
), p.
3311
.10.1038/s41467-020-17123-6
14.
Pelt
,
D. M.
, and
Sethian
,
J. A.
,
2018
, “
A Mixed-Scale Dense Convolutional Neural Network for Image Analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
2
), pp.
254
259
.10.1073/pnas.1715832114
15.
Satilmis
,
Y.
,
Tufan
,
F.
,
Şara
,
M.
,
Karslı
,
M.
,
Eken
,
S.
, and
Sayar
,
A.
,
2018
, “
CNN Based Traffic Sign Recognition for Mini Autonomous Vehicles. Information Systems Architecture and Technology
,”
Proceedings of 39th International Conference on Information Systems Architecture and Technology
(
ISAT
), Springer, Cham, Advances in Intelligent Systems and Computing, 853, pp.
85
94
.10.1007/978-3-319-99996-8_8
16.
Taraba
,
M.
,
Adamec
,
J.
,
Danko
,
M.
, and
Drgona
,
P.
,
2018
, “
Utilization of Modern Sensors in Autonomous Vehicles
,”
2018 Elektro
, Mikulov, Czech Republic, May 21–23, pp.
1
5
.10.1109/ELEKTRO.2018.8398279
17.
Sun
,
Y.
,
Yu
,
W.
,
Chen
,
Y.
, and
Kadam
,
A.
,
2019
, “
Time Series Anomaly Detection Based on GAN
,”
2019 Sixth International Conference on Social Networks Analysis, Management and Security
(
SNAMS
), Granada, Spain, Oct. 22–25, pp.
375
382
.10.1109/SNAMS.2019.8931714
18.
Xiong
,
Z.
,
Li
,
W.
,
Han
,
Q.
, and
Cai
,
Z.
,
2019
, “
Privacy-Preserving Auto-Driving: A GAN Based Approach to Protect Vehicular Camera Data
,”
IEEE International Conference on Data Mining
(
ICDM
), Beijing, China, Nov. 8–11, pp.
668
677
.10.1109/ICDM.2019.00077
19.
Suh
,
Y.
,
Bostanabad
,
R.
, and
Won
,
Y.
,
2021
, “
Deep Learning Predicts Boiling Heat Transfer
,”
Sci. Rep.
,
11
(
1
), p.
5622
.10.1038/s41598-021-85150-4
20.
Guo
,
L.
,
Manglani
,
S.
,
Liu
,
Y.
, and
Jia
,
Y.
,
2018
, “
Automatic Sensor Correction of Autonomous Vehicles by Human-Vehicle Teaching-and-Learning
,”
IEEE Trans. Veh. Technol.
,
67
(
9
), pp.
8085
8099
.10.1109/TVT.2018.2846593
21.
Bochkovskiy
,
A.
,
Wang
,
C. Y.
, and
Liao
,
H. Y. M.
,
2020
, “
YOLOv4: Optimal Speed and Accuracy of Object Detection
,”
arXiv:2004.10934
.https://www.researchgate.net/publication/340883401_YOLOv4_Optimal_Speed_and_Accuracy_of_Object_Detection
22.
Rjoub
,
G.
,
Wahab
,
O. A.
,
Bentahar
,
J.
, and
Bataineh
,
A. S.
,
2021
, “
Improving Autonomous Vehicles Safety in Snow Weather Using Federated YOLO CNN Learning
,”
Part of the Lecture Notes in Computer Science Book Series
,
LNISA
, Springer, Cham, p.
12814
.10.1007/978-3-030-83164-6_10
23.
Qian
,
R.
,
Tan
,
R. T.
,
Yang
,
W.
,
Su
,
J.
, and
Liu
,
J.
, “
Attentive Generative Adversarial Network for Raindrop Removal From a Single Image
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Institute of Computer Science and Technology, Peking University, National University
, Salt Lake City, UT, June 18–23, pp.
2482
2491
.10.1109/CVPR.2018.00263
24.
Paul
,
S.
,
2020
, “
An Introduction to Image Inpainting Using Deep Learning
,” accessed June 2022, https://github.com/ayulockin/deepimageinpainting
25.
Yang
,
S.
,
Wu
,
C.
,
Zhao
,
G.
,
Sun
,
J.
,
Yao
,
X.
,
Ma
,
X.
, and
Wang
,
Z.
,
2021
, “
Condensation Frosting and Passive Antifrosting
,”
Cell Rep. Phys. Sci.
,
2
(
7
), p.
100474
.10.1016/j.xcrp.2021.100474
26.
Ignatious
,
H. A.
,
Sayed
,
H.-E.
, and
Khan
,
M.
,
2022
, “
An Overview of Sensors in Autonomous Vehicles
,”
Proc. Comp. Sci.
,
198
, pp.
736
741
.10.1016/j.procs.2021.12.315
27.
Nath
,
S.
,
Ahmadi
,
S. F.
, and
Boreyko
,
J. B.
,
2017
, “
A Review of Condensation Frosting
,”
Nanoscale Microscale Theosophys. Eng.
,
21
(
2
), pp.
81
101
.10.1080/15567265.2016.1256007
28.
Ultralytics
,
2023
, “YOLOv5 (PyTorch),” accessed June 2023, https://github.com/ultralytics/yolov5
29.
Bao
,
D. Q.
,
2023
, “
Image Blur Metric, MATLAB Central File Exchange
,” accessed Apr. 2023, https://www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
30.
Crété-Roffet
,
F.
,
Dolmiere
,
T.
,
Ladret
,
P.
, and
Nicolas
,
M.
,
2007
, “
The Blur Effect: Perception and Estimation With a New No-Reference Perceptual Blur Metric
,”
SPIE Electronic Imaging Symposium Conf Human Vision and Electronic Imaging
,
San Jose, CA
, p.
EI-6492
.10.1117/12.702790
31.
Ali
,
U.
, and
Muhammad
,
T.
,
2018
, “
Analysis of Blur Measure Operators for Single Image Blur Segmentation
,”
Appl. Sci.
,
8
(
5
), p.
807
.10.3390/app8050807
You do not currently have access to this content.