This study examines the cooling performance of two hybrid cooling schemes that capitalize on the merits of both microchannel flow and jet impingement to achieve the high cooling fluxes and uniform temperatures demanded by advanced defense electronics. The jets supply HFE 7100 liquid coolant gradually into each microchannel. The cooling performances of two different jet configurations, a series of circular jets and a single slot jet, are examined both numerically and experimentally. The single-phase performances of both configurations are accurately predicted using 3D numerical simulation. Numerical results point to complex interactions between the jets and the microchannel flow, and superior cooling performance is achieved by optimal selection of microchannel height. The two-phase cooling performance of the circular-jet configuration is found superior to that of the slot jet, especially in terms of high-flux heat dissipation. Unprecedented cooling fluxes, as high as 1127W/cm2, are achieved with the circular jets without incurring CHF.

1.
Mudawar
,
I.
, 2001, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
122
141
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
3.
Peng
,
X. F.
, and
Wang
,
B. X.
, 1993, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
3421
3427
.
4.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
321
332
.
5.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
6.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Micro-Tube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2817
2830
.
7.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part I—Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
928
940
.
8.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
639
645
.
9.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
399
415
.
10.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2549
2565
.
11.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Lauder
,
B. E.
, 1993, “
Impinging Jet Studies for Turbulence Model Assessment—II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
2685
2697
.
12.
Park
,
T. H.
,
Choi
,
H. G.
,
Yoo
,
J. Y.
, and
Kim
,
S. J.
, 2003, “
Streamline Upwind Numerical Simulation of Two-Dimensional Confined Impinging Slot Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
251
262
.
13.
Baydar
,
E.
, and
Ozmen
,
Y.
, 2005, “
An Experimental and Numerical Investigation on a Confined Impinging Air Jet at High Reynolds Numbers
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
409
421
.
14.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
15.
Jiji
,
L. M.
, and
Dagan
,
Z.
, 1987,
Experimental Investigation of Single-Phase Multi-Jet Impingement Cooling of Array of Microelectronic Heat Sources
,
Proc. Int. Symp. on Cooling Technology for Electronic Equipment
,
Honolulu, HI
, pp.
265
283
.
16.
Monde
,
M.
, 1987, “
Critical Heat Flux in Saturated Forced Convection Boiling on a Heated Disk With an Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
991
996
.
17.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
, 1990, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
891
898
.
18.
Estes
,
K. A.
, and
Mudawar
,
I.
, 1995, “
Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
323
332
.
19.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
, 1996, “
Local Jet Impingement Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1395
1406
.
20.
Johns
,
M. E.
, and
Mudawar
,
I.
, 1996, “
An Ultra-High Power Two-Phase Jet-Impingement Avionic Clamshell Module
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
264
270
.
21.
Monde
,
M.
, and
Mitsutake
,
Y.
, 1996, “
Critical Heat Flux in Forced Convective Subcooled Boiling With Multiple Impinging Jets
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
241
243
.
22.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2006, “
Experimental and Numerical Investigation of Single-Phase Heat Transfer Using a Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
682
694
.
23.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2008, “
Single-Phase Hybrid Micro-Channel/Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4342
4352
.
24.
2005, Fluent 6.2.16, User’s Guide, Fluent Inc., NH, Lebanon.
25.
2006, Gambit 2.2.30, User’s Guide, Fluent Inc., NH, Lebanon.
26.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
27.
Mudawar
,
I.
, and
Wadsworth
,
D. C.
, 1991, “
Critical Heat Flux From a Simulated Chip to a Confined Rectangular Impinging Jet of Dielectric Liquid
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1465
1479
.
28.
Ma
,
C. F.
, and
Bergles
,
A. E.
, 1986, “
Jet Impingement Nucleate Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1095
1101
.
You do not currently have access to this content.