In the near future, electronic cabinets of data centers will house high performance chips with heat fluxes approaching 100W/cm2 and associated high volumetric heat generation rates. With the power trends in the electronic cabinets indicating 60 kW cabinets in the near future, the current cooling systems of data centers will be insufficient and new solutions will need to be explored. Accordingly, the key issue that merits investigation is identifying and satisfying the needed specifications of the new thermal solutions, considering the design environment of the next generation data centers. Anchoring our work in the open engineering system paradigm, we identify the requirements of the future thermal solutions and explore various design specifications of an ideally open thermal solution for a next generation data center. To approach an open cooling system for the future data centers, the concept of a thermal solution centered on the multiscale (multilevel) nature of the data centers is discussed. The potential of this solution to be open, along with its theoretical advantages compared with the typical air-cooling solutions, is demonstrated through some scenarios. The realization problems and the future research needs are highlighted to achieve a practical open multiscale thermal solution in data centers. Such solution is believed to be both effective and efficient for the next generation data centers.

1.
Patel
,
C. D.
,
Sharma
,
R.
,
Bash
,
C.
, and
Beitelmal
,
M.
, 2002, “
Thermal Considerations in Cooling of Large Scale High Compute Density Data Centers
,”
Eight Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2002)
, San Diego, CA.
2.
Rambo
,
J.
, and
Joshi
,
Y.
, “
Multi-Scale Modeling of High Power Density Data Centers
,”
The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition (InterPACK03)
, Kauai, HI, Paper No. InterPack2003-35297.
3.
Rambo
,
J.
, and
Joshi
,
Y.
, 2003, “
Physical Models in Data Center Airflow Simulations
,”
ASME International Mechanical Engineering Congress and R&D Exposition (IMECE-03)
, Washington, DC, Paper No. IMECE03-41381.
4.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73234.
5.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
, 2005, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73387.
6.
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2004, “
Raised-Floor Data Center: Perforated Tile Flow Rates for Various Tile Layouts
,”
Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2004)
, Las Vegas, NV.
7.
VanGilder
,
J. W.
, and
Schmidt
,
R.
, 2005, “
Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73375.
8.
Shah
,
A.
,
Carey
,
V.
,
Bash
,
C.
, and
Patel
,
C.
, 2005, “
Energy-Based Optimization Strategies for Multi-Component Data Center Thermal Management: Part I, Analysis
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73137.
9.
Shah
,
A.
,
Carey
,
V.
,
Bash
,
C.
, and
Patel
,
C.
, 2005, “
Energy-Based Optimization Strategies for Multi-Component Data Center Thermal Management: Part II, Application and Validation
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73138.
10.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
, 2005, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73027.
11.
Schmit
,
R.
, and
Iyengar
,
M.
, 2005, “
Effect of Data Center Layout on Rack Inlet Air Temperatures
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73385.
12.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
, 2002, “
Dimensionless Parameters for the Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,” AIAA Paper No. 2002-3091.
13.
Kang
,
S.
,
Schmidt
,
R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2000, “
A Methodology for the Design of Perforated Tiles in a Raised Floor Data Center Using Computational Flow Analysis
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2000)
, Las Vegas, NV.
14.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
, 2004, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
Inter Society Conference on Thermal Phenomena
,
IEEE
,
New York
.
15.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2006, “
Robust Design of Turbulent Convective Systems Using the Proper Orthogonal Decomposition
,”
ASME J. Mech. Des.
1050-0472, Special Issue Robust and Risk Based Design,
128
(
4
), pp.
844
855
.
16.
Crippen
,
M. J.
,
Alo
,
R. K.
,
Champion
,
D.
,
Clemo
,
R. M.
,
Grosser
,
C. M.
,
Gruendler
,
N. J.
,
Mansuria
,
M. S.
,
Matteson
,
J. A.
,
Miller
,
M. S.
, and
Trumbo
,
B. A.
, 2005, “
BladeCenter Packaging, Power, and Cooling
,”
IBM J. Res. Dev.
,
49
(
6
), pp.
887
904
. 0018-8646
17.
ASHRAE
, 2005,
Datacom Equipment Power Trends and Cooling Applications
,
American Society of Heating, Refrigeration and Air-Conditioning Engineers
,
Atlanta, GA
.
20.
APC (American Power Conversion) Corporation
, http://www.apc.comhttp://www.apc.com.
22.
Heydari
,
A.
, and
Sabounchi
,
P.
, 2004, “
Refrigeration Assisted Spot Cooling of a High Heat Density Data Center
,”
Inter Society Conference of Thermal Phenomena
,
IEEE
,
New York
.
23.
Schmidt
,
R.
,
Chu
,
R.
,
Ellsworth
,
M.
,
Iyengar
,
M.
,
Porter
,
D.
,
Kamath
,
V.
, and
Lehman
,
B.
, 2005, “
Maintaining Datacom Rack Inlet Temperatures With Water Cooled Heat Exchanger
,”
ASME InterPACK
, San Francisco, CA,
ASME
,
New York
, Paper No. IPACK2005-73468.
24.
Wang
,
D.
, 2004, “
A Passive Solution to a Difficult Data Center Environmental Problem
,”
Inter Society Conference on Thermal Phenomena
,
IEEE
,
New York
.
25.
Beaty
,
D.
, and
Schmidt
,
R. R.
, 2004, “
Back to the Future: Liquid Cooling Data Center Consideration
,”
ASHRAE J.
,
46
(
12
), pp.
42
47
. 0001-2491
26.
Gurram
,
S.
,
Suman
,
S.
,
Joshi
,
Y.
, and
Fedorov
,
A.
, 2003, “
Thermal Issues in Next Generation Integrated Circuits
,”
International Electronic Packaging Technical Conference and Exhibition (IPACK03)
, Maui, HI,
ASME
,
New York
.
27.
Simpson
,
T. W.
,
Lautenschlager
,
U.
, and
Mistree
,
F.
, 1998, “
Towards Mass Customization in the Age of Information: The Case for Open Engineering Systems
,”
The Information Revolution: Present and Future
,
W.
Read
and
A.
Porter
, eds.,
Ablex
,
Westport, CT
, pp.
49
71
.
28.
Zuo
,
Z. J.
,
Hoover
,
L. R.
, and
Phillips
,
A. L.
, 2002, “
An Integrated Thermal Architecture for Thermal Management of High Power Electronics
,”
Thermal Challenges in Next Generation Electronic Systems
,
Y.
Joshi
and
S.
Garimella
, eds.,
Millpress
,
Rotterdam
.
30.
Joshi
,
Y.
, and
Wei
,
X.-J.
, 2007, “
Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management—Review
,”
International J. Heat Exchangers
(Invited Paper), Special Supplemental Issue on Advances in Compact Heat Exchangers, pp.
1
32
.
31.
Amon
,
C. H.
,
Yao
,
S.-C.
,
Wu
,
C.-F.
, and
Hsieh
,
C.-C.
, 2005, “
Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
66
75
.
32.
Williams
,
Z. A.
, and
Roux
,
J. A.
, 2006, “
Graphite Foam Thermal Management of a High Packing Density Array of Power Amplifiers
,”
Ninth AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, San Francisco, CA, Jun. 5–8, AIAA Paper No. 2006-3609.
33.
Coggins
,
C.
,
Gerlach
,
D.
,
Joshi
,
Y.
, and
Federov
,
A.
, 2006, “
Compact Low Temperature Refrigeration of Microprocessors
,”
Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue University
, Purdue, IN.
34.
Karki
,
K. C.
,
Patankar
,
S. V.
, and
Radmehr
,
A.
, 2003,
Techniques for Controlling Airflow Distribution in Raised-Floor Data Centers
,
American Society of Mechanical Engineers
,
New York
.
35.
Fried
,
E.
, and
Idelchik
,
I. E.
, 1989,
Flow Resistance: A Design Guide for Engineers
,
Hemisphere
,
New York
.
36.
2001, FLUENT, Version 6.1, User’s Manual, Fluent Incorporated, Lebanon, NH.
37.
Rambo
,
J.
, and
Joshi
,
Y.
, 2006, “
Thermal Modeling of Technology Infrastructure Facilities: A Case Study of Data Centers
,”
The Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
Taylor & Francis
,
New York
.
38.
Belytschko
,
T.
,
Fish
,
J.
,
Hughes
,
T. J. R.
, and
Oden
,
J. T.
, 2004,
Simulation Based Engineering Science
, A Report on a Workshop Held Under the Auspices of the National Science Foundation, Arlington, VA.
39.
Panchal
,
J. H.
, 2005, “
A Framework for Simulation-Based Integrated Design of Multiscale Products and Design Processes
,” Ph.D. dissertation, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.