Microelectromechanical systems (MEMSs) consist of moving mechanical microparts often integrated with electronics and optics that may be used for sensing or actuating purposes. MEMS and micro-opto-electromechanical system (MOEMS) packaging requirements vary widely with application, but they generally involve protecting the device from the damaging effects of the environment, such as moisture and dust. Reliability is often not considered as a design factor during product development. Rather, reliability is assessed using life tests, accelerated tests, and other techniques after a product has completed its development cycle. The goal of design for reliability (DfR) is to be proactive by introducing reliability early in product development so that concerns are identified and assessed at every stage, from the conception to obsolescence. In this paper, we present a framework for applying DfR principles to MOEMS packaging. Such an approach is desirable for several reasons. First, it reduces the cost and time for product development by departing from the “build-test-rebuild” approach. Second, it provides better understanding of the process input-output relationships, so the practitioner is better able to make informed design decisions. Lastly, this can lead to enhanced product performance, reliability, and reduced cost. To demonstrate the use of DfR in MOEMS packaging, we present a case study involving carrier level packaging of a MOEMS switch. The reliability requirements for this device are stringent, namely, a shelf life of 25years or more, requiring hermetic sealing through the use of metal seals and no organic compounds inside the package. Simulation and experiments are used systematically in order to guide the package design and process windows, ensuring that the device passes MIL-STD reliability tests. The packaging processes include fluxless die-to-carrier attachment, optical fiber-to-carrier attachment, and hermetic sealing. Results show that our packaging approach can determine adequate process windows using only a small number of reliability experiments.

1.
Kim
,
S.
,
Barbastathis
,
G.
, and
Tuller
,
H. L.
, 2004, “
MEMS for Optical Functionality
,”
J. Electroceram.
1385-3449,
12
, pp.
133
144
.
2.
Ho
,
C.
, 1998, “
Microelectromechanical Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
579
612
.
3.
Mehregany
,
M.
, and
Zorman
,
C. A.
, 1999, “
SiC MEMS: Opportunities and Challenges for Applications in Harsh Environments
,”
Thin Solid Films
0040-6090,
355-356
, pp.
518
524
.
4.
Neukermans
,
A.
, and
Ramaswami
,
R.
, 2001, “
MEMS Technology for Optical Networking Applications
,”
IEEE Commun. Mag.
0148-9615,
39
, pp.
62
69
.
5.
Robinson
,
S. D.
, 2001, “
MEMS Technology: Micromachines Enabling the All Optical Network
,”
2001 Electronic Components and Technology Conference
.
6.
Spearing
,
S. M.
, 2000, “
Materials Issues in Microelectromechanical Systems (MEMS)
,”
Acta Mater.
1359-6454,
48
, pp.
179
196
.
7.
Frazier
,
A. B.
,
Warrington
,
R. O.
, and
Friedrich
,
C.
, 1995, “
The Miniaturization Technologies: Past, Present, and Future
,”
IEEE Trans. Ind. Electron.
0278-0046,
42
(
5
), pp.
423
430
.
8.
Gau
,
J.
,
Lan
,
E. H.
,
Dunn
,
B.
,
Ho
,
C.
, and
Woo
,
J. C. S.
, 2001, “
A MEMS Based Amperometric Detector for E. Coli Bacteria Using Self-Assembled Monolayers
,”
Biosens. Bioelectron.
0956-5663,
16
, pp.
745
755
.
9.
Warneke
,
B. A.
, and
Pister
,
K. S. J.
, 2002, “
MEMS for Distributed Wireless Sensor Networks
,”
Ninth International Conference on Electronics, Circuits, and Systems
,
1
, pp.
291
294
.
10.
Tilmans
,
H. A. C.
,
De Raedt
,
W.
, and
Beyne
,
E.
, 2003, “
MEMS for Wireless Communications: From RF-MEMS Components to RF-MEMS-SiP
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
S139
S163
.
11.
Wu
,
M. C.
, 1997, “
Micromachining for Optical and Optoelectronic Systems
,”
Proc. IEEE
0018-9219,
85
(
11
), pp.
1833
1856
.
12.
Staple
,
B. D.
, and
Jakubczak
,
J.
, 2000, “
The Impact of MEMS Based Microsystems on US Defense Applications
,”
Proceedings of the 2000 Government Microcircuit Applications Conference
.
13.
Hornbeck
,
L. J.
, 1995, “
Digital Light Processing and MEMS: Timely Convergence for a Bright Future
,”
Plenary Session, SPIE Micromachining and Microfabrication
.
14.
Hornbeck
,
L. J.
, 1996, “
Digital Light Processing and MEMS: An Overview
,”
IEEE∕LEOS 1996 Summer Topical Meetings
,
Keystone
,
CO
, Aug. 5–9, Paper No. WA3, pp.
7
8
.
15.
Wang
,
Z. F.
,
Cao
,
W.
, and
Lu
,
Z.
, 2005, “
MOEMS: Packaging and Testing
,”
Microsyst. Technol.
0946-7076,
12
, pp.
52
58
.
16.
Liwei
,
L.
, 2000, “
MEMS Post-Packaging by Localized Heating and Bonding
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
, pp.
608
616
.
17.
Da Silva
,
M.
, 2004, “Standard Open Tool Packages for MEMS-Enabled Products,” Advanced Packaging Magazine, 13(9), pp. 26–29.
18.
Lee
,
Y. C.
,
Parviz
,
B. A.
,
Chiou
,
J. A.
, and
Chen
,
S.
, 2003, “
Packaging for Microelectromechanical and Nanoelectromechanical Systems
,”
IEEE Trans. Adv. Packag.
1521-3323,
26
(
3
), pp.
217
226
.
19.
Walker
,
J. A.
, 2000, “
The Future of MEMS in Telecommunications Networks
,”
J. Micromech. Microeng.
0960-1317,
10
, pp.
R1
R7
.
20.
Ramesham
,
R.
, and
Ghaffarian
,
R.
, 2000, “
Challenges in Interconnection and Packaging of Microelectromechanical Systems (MEMS)
,”
Proceedings of Electronic Components and Technology Conference
.
21.
Dressendorfer
,
P. V.
,
Peterson
,
D. A.
, and
Reber
,
C. A.
, 2000, “
MEMS Packaging: Current Issues and Approaches
,”
International Conference on High Density Interconnect and Systems Packaging
,
Denver
,
CO
, April, pp.
208
213
.
22.
Gilleo
,
K.
, 2000, “
MEMS Packaging Issues and Materials
,”
2000 IMAPS International Symposium on Microelectronics
, September, pp.
598
604
.
23.
Mignardi
,
M.
, 1998, “
From ICs to DMDs
,”
Tex. Instrum.Tech. J.
0893-7877,
15
(
3
), pp.
56
63
.
24.
IEEE Reliability Society, 2007, www.ieee.orgwww.ieee.org
25.
Tummala
,
R.
, 2001,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
26.
Kim
,
K. O.
,
Zuo
,
M. J.
, and
Kuo
,
W.
, 2005, “
On the Relationship of Semiconductor Yield and Reliability
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
18
(
3
), pp.
422
429
.
28.
Design for Reliability
, 2001,
Crowe
,
D.
, and
Feinberg
,
A.
, ed.,
CRC
,
Boca Raton, FL
.
29.
Frase
,
K. G.
, and
Seeger
,
D. E.
, 2005,
IBM J. Res. Dev.
0018-8646,
49
(
4∕5
), p.
606
.
30.
Gogoi
,
B.
,
Vujosevic
,
M.
, and
Petrovic
,
S.
, 2000, “
Challenges in Packaging for MEMS Devices
,”
Proceedings of SMTA International
.
31.
Faris
,
I.
, and
Kocian
,
T.
, 1998, “
DMD Packages: Evolution and Strategy
,”
Tex. Instrum.Tech. J.
0893-7877,
15
(
3
), pp.
87
94
.
32.
Beranek
,
M. W.
,
Rassaian
,
M.
,
Tang
,
C.-H.
,
St. John
,
C. L.
, and
Loebs
,
V. A.
, 2001, “
Characterization of 63Sn37Pb and 80Au20Sn Solder Sealed Optical Fiber Feedthroughs Subjected to Repetitive Thermal Cycling
,”
IEEE Trans. Adv. Packag.
1521-3323,
24
(
4
), pp.
576
585
.
33.
Olsen
,
D. R.
, and
Berg
,
H. M.
, 1979, “
Properties of Die Bond Alloys Relating to Thermal Fatigue
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
CHMT-2
(
2
), pp.
257
263
.
34.
Cochran
,
K. R.
,
Fan
,
L.
, and
DeVoe
,
D. L.
, 2005, “
High-Power Optical Microswitch Based on Direct Fiber Actuation
,”
Sens. Actuators, A
0924-4247,
119
(
2
), pp.
512
519
.
35.
Li
,
J.
,
Zhang
,
Q. X.
, and
Liu
,
A. Q.
, 2003, “
Advanced Fiber Optical Switches Using Deep RIE (DRIE) Fabrication
,”
Sens. Actuators, A
0924-4247,
102
(
3
), pp.
286
295
.
36.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
, 1978,
Statistics for Experimenters
,
Wiley
,
New York
, p.
180
.
37.
Popa
,
D. O.
,
Murthy
,
R.
,
Sin
,
J.
,
Mittal
,
M.
, and
Stephanou
,
H. E.
, 2006, “
M3: Modular Microassembly System for MEMS Packaging
,”
IMAPS International Conference
,
San Diego
, October.
38.
Wood
,
L.
,
Fairfield
,
C.
, and
Wang
,
K.
, 2000, “
Plasma Cleaning of Chip Scale Packages for Improvement of Wire Bond Strength
,”
2000 International Symposium on Electronic Materials and Packaging
, pp.
406
408
.
39.
Greenstein
,
M.
, 2000, “
Optical Absorption Aspects of Laser Soldering for High Density Interconnects
,”
Appl. Opt.
0003-6935,
28
(
21
), pp.
4595
4603
.
40.
Fasoro
,
A.
,
Popa
,
D.
,
Deeds
,
M.
,
Beardsley
,
H.
,
Agonafer
,
D.
, and
Stephanou
,
H.
, 2006, “
Fluxless Optical Fiber Attachment for Hermetic MOEMS Applications
,” in
Proceedings of the Intersociety Conference on Thermal and Thermo-Mechanical Phenomena in Electronic Systems (ITHERM)
,
San Diego, USA
, May 30—June 2.
42.
Daniel
,
C.
, 1959, “
Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments
,”
Technometrics
0040-1706,
1
(
4
), pp.
311
334
.
You do not currently have access to this content.