Sn-based, Pb-free solders with high a Sn content and high melting temperature often cause excessive interfacial reactions at interfaces. Sn-3.5Ag solder alloy has been used to identify its interfacial reactions with two-metal layer flexile substrates. In this paper the dissolution kinetics of Sn3.5Ag solder on the electrolytic Ni and electroless NiP layer are investigated. It is found that during 1 min reflow the electrolytic Ni layer dissolves much less than the electroless NiP layer due to the formation of Ni3Sn and Ni3Sn2 intermetallic compounds (IMCs) on the electrolytic Ni layer. The faster nucleation of Ni3Sn4 IMC on the NiP layer is proposed as the main reason for the higher initial dissolution rate of the electroless NiP layer. A P-rich Ni layer is formed underneath the Ni3Sn4 IMC due to the solder-assisted reactions. This P-rich Ni layer acts as a good diffusion barrier layer, which decreases the dissolution rate of the NiP layer as compared to that of the Ni layer, but weakens the interface of solder joints and reduces the ball shear load and reliability. Below a certain thickness, the P-rich Ni layer breaks and an increase in the diffusion of Sn atoms through the fractured P-rich Ni layer occurs that increases the growth rate of IMCs again, and thus the dissolution rate of the NiP layer becomes higher again than for the Ni layer. It is found that a 3μm thick NiP layer cannot protect the Cu layer for more than 120 min reflow at 250°C. An electrolytic Nisolder system has a relatively higher shear load, a lower dissolution rate of the Ni layer, and is more protective for the Cu layer during extended times of reflow.

1.
Blackwell
,
G. R.
, 2000,
The Electronic Packaging Handbook
,
CRC Press
LLC, pp.
4.1
4.27
.
2.
Chan
,
Y. C.
,
So
,
A. C. K.
, and.
Li
,
J. K. L.
, 1998, “
Growth Kinetics Studies of Cu–Sn Intermetallic Compound and its Effect on Shear Strength of LCCC SMT Solder Joints
,”
Mater. Sci. Eng., B
0921-5107,
55
, pp.
5
13
.
3.
So
,
A. C. K
,
Chan
,
Y. C.
, and
Li
,
J. K. L.
, 1997, “
Effect of Intermetallic Compounds on the Shear Fatigue of Cu∕63Sn‐37Pb Solder Joints
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
20
, pp.
463
469
.
4.
Tu
,
P. L.
,
Chan
,
Y. C.
,
Hang
,
K. C.
, and
Li
,
J. K. L.
, 2001, “
Growth Kinetics of Intermetallic Compounds in Chip Scale Package Solder Joint
,”
Scr. Mater.
1359-6462,
44
, pp.
317
323
.
5.
Kay
,
P.
, and
McKay
,
C. A.
, 1997, “
Barrier Layer Against Diffusion
,”
Trans. Inst. Met. Finish.
0020-2967,
57
, p.
169
.
6.
Kang
,
S. K.
,
Choi
,
W. K.
,
Shih
,
D. Y.
,
Lauro
,
P.
,
Henderson
,
D. W.
,
Gosselin
,
T.
, and
Leonard
,
D. N.
, 2002, “
Interfacial Reactions, Microstructure and Mechanical Properties of Pb-Free Solder Joints in PBGA Laminates
,” ECTC, pp.
146
153
.
7.
Kang
,
S. K.
,
Shih
,
D. Y.
,
Fogel
,
K.
,
Lauro
,
P.
, and
Yim
M. J.
, 2001, “
Interfacial Reaction Studies on Lead Free Solder Alloys
,” ECTC, pp.
448
454
.
8.
Max
,
H.
, 1958,
Constitution of Binary Alloys
,
McGraw-Hill
, New York.
9.
Ghoi
,
W. K.
, and
Lee
,
H. M.
, 1999, “
Effect of Ni layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface Between Molten Sn–Ag and Ni∕Cu Substrate
,”
J. Electron. Mater.
0361-5235,
28
, pp.
1251
1255
.
10.
Chen
,
S.-W
,
Chen
,
C.-M.
, and
Liu
,
W.-C.
, 1998, “
Electric Current Effects Upon the Sn∕Cu and Sn∕Ni Interfacial Reactions
,”
J. Electron. Mater.
0361-5235,
27
, p.
1193
.
11.
Jang
,
J. W.
,
Kim
,
P. G.
,
Tu
,
K. N.
,
Frear
,
D. R.
, and
Thompson
P.
, 1999, “
Solder Reaction Assisted Crystallization of Electroless Ni–P Under Bump Metallization in Low Cost Flip Chip Technology
,”
J. Appl. Phys.
0021-8979,
85
, pp.
8456
8461
,
12.
Zribi
,
A.
,
Zavalij
,
L.
,
Borgesen
,
P.
,
Primavera
,
A.
,
Westby
,
G.
, and
Cotts
,
E. J.
, 2001, “
The Kinetics of Formation of Ternary Intermetallic Alloys in Pb–Sn and Cu–Sn–Ag Lead Free Electronic Joints
” ECTC, pp.
687
692
.
13.
Bader
,
S.
,
Gust
,
W.
, and
Hieber
,
H.
, 1995,
Acta Metall. Mater.
, 0956-7151
43
, p.
329
.
14.
Jeon
,
Y-D.
and
Paik
,
K-W.
, 2001, “
Studies on Ni–Sn Intermetallic Compound and P-Rich Ni Layer at the Electroless Ni UBM Solder Interface and Their Effects on Flip Chip Solder Joint Reliability
,” ECTC, pp.
1326
1332
.
15.
Mei
,
Z.
,
Kaufmann
,
M.
,
Eslambolchi
,
A.
, and
Johnson
,
P.
, 1998, “
Brittle Interfacial Fracture of PBGA packages on Electroless Nickel ∕ Immersion Gold
,” ECTC, pp.
952
961
.
16.
Mei
,
Z.
,
Callery
,
P.
,
Fisher
,
D.
,
Hau
,
F.
, and
Glazer
,
J.
, 1997, “
Interfacial Fracture Mechanism of BGA Packages of Electroless Ni∕Au
,”
Adv. Electron. Packag.
,
2
, pp.
1543
1550
.
17.
Alam
,
M. O.
,
Chan
,
Y. C.
, and
Hung
,
K. C.
, 2002, “
Reaction Kinetics of Pb–Sn and Sn–Ag Solder Balls With Electroless Ni–P∕Cu Pad During Reflow Soldering in Microelectronic Packaging
,” ECTC, pp.
1650
1657
.
18.
Jeon
,
Y.
, and
Paik
,
K.
, 2001, “
Studies on Ni–Sn compound and P rich layer at the Electroless Ni UBM—Solder Interface and Their Effects on Flip-Chip Solder Joint Reliability
,” 51st ECTC, Orlando, FL, USA, pp.
1326
1331
.
19.
Islam
,
M. N
,
Chan
,
Y. C.
, and
Sharif
,
A.
, 2004, “
Interfacial Reactions of Sn–Cu and Sn–Pb–Ag Solder With Au∕Ni Surface Finish on Cu Pad in BGA Packages
,”
J. Mater. Res.
0884-2914,
19
, pp.
2897
2904
.
You do not currently have access to this content.