Membrane electrode assembly (MEA) buckling tests in microscopic clearances under humidity cycles and numerical analyses by finite element method (FEM) were conducted. The NR211 (Dupont, 25-μm thickness, equivalent weight (EW) = 1100) sandwiched between catalyst layers (CLs) was used as the MEA. Based on tensile tests of the NR211 and NR211-CL and FEM simulation of tensile tests, the Young’s modulus and yield point of CL were estimated. While the CL had a higher Young’s modulus than the NR211 in water vapor, the CL indicated a lower Young’s modulus than the NR211 in liquid water at 80 °C. The buckling tests in microscopic diameter of 200 μm in polyimide film were carried out. The heights of bulge in the NR211 and NR211-CL after five humidity cycles were measured with a laser microscope. The height of the NR211-CL was lower than that of the NR211, due to the stiffer CL and the lower swelling ratio of the NR211-CL. Moreover, when the humidity cycles were repeated less than 1000 times, cracks were formed in the CL. The stress-strain behaviors of the NR211-CL buckling test under a humidity cycle were investigated by using the FEM. When the NR211-CL swelled, higher stress was developed at the topside of bulge and topside of bulge round. These portions corresponded to the CL crack-formed portions in the buckling test. When the NR211-CL deswelled, the tensile stress was induced in the entire NR211. The mechanical degradation mechanisms were considered as follows: Firstly, cracks initiate and propagate in the CL when the MEA swells in repeating humidity cycles. Moreover, the tensile stress is induced in the polymer electrolyte membrane (PEM) under deswelling and the CL cracks propagate into the PEM from the CL, which results in pinholes in the PEM.

References

1.
Lai
,
Y. H.
, and
Dillard
,
D. A.
,
2009
,
Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability
, Vol.
5
,
W.
Vielstich
,
H. A.
Gasteiger
, and
H.
Yokokawa
, eds.,
Wiley
,
New York
, pp.
403
419
.
2.
Hector
,
L. G.
, Jr.
,
Lai
,
Y. H.
,
Tong
,
W.
, and
Lukitsch
,
M. J.
,
2007
, “
Strain Accumulation in Polymer Electrolyte Membrane and Membrane Electrode Assembly Materials During a Single Hydration/Dehydration Cycle
,”
ASME J. Fuel Cell Sci. Technol.
,
4
, pp.
19
28
.10.1115/1.2393302
3.
Lai
,
Y. H.
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
,
2009
, “
Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
021002
.10.1115/1.2971045
4.
Dillard
,
D. A.
,
Li
,
Y.
,
Grohs
,
J. R.
,
Case
,
S. W.
,
Ellis
,
M. W.
, and
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
C. S.
,
2009
, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
031014
.10.1115/1.3007431
5.
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Gittleman
,
C. S.
, and
Miller
D. P.
,
2009
, “
Fatigue and Creep to Leak Tests of Proton Exchange Membranes Using Pressure-Loaded Blisters
,”
J. Power Sources
,
194
, pp.
873
879
.10.1016/j.jpowsour.2009.06.083
6.
Grohs
,
J. R.
,
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2010
, “
Evaluating the Time and Temperature Dependent Biaxial Strength of Gore-Select® Series 57 Proton Exchange Membrane Using a Pressure Loaded Blister Test
,”
J. Power Sources
,
195
, pp.
527
531
.10.1016/j.jpowsour.2009.07.054
7.
Pestrak
,
M.
,
Li
,
Y.
,
Case
,
S. W.
,
Dillard
,
D. A.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2010
, “
The Effect of Mechanical Fatigue on the Lifetimes of Membrane Electrode Assemblies
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
041009
.10.1115/1.4000629
8.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, “
Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
119
124
.10.1115/1.2173666
9.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2006
, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle
,”
J. Power Sources
,
161
, pp.
987
996
.10.1016/j.jpowsour.2006.05.020
10.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2007
, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
,
170
, pp.
345
358
.10.1016/j.jpowsour.2007.03.063
11.
Kusoglu
,
A.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2010
, “
Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
B705
B713
.10.1149/1.3328496
12.
Solasi
,
R.
,
Huang
,
X.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
, and
Condit
,
D.
,
2006
, “
Mechanical Response of 3-Layered MEA During RH and Temperature Variation Based on Mechanical Properties Measured Under Controlled T and RH
,”
ASME 4th International Conference on Fuel Cell Science, Engineering and Technology
, Irvine, CA, June 19–21,
ASME
Paper No. FUELCELL2006-97094.10.1115/FUELCELL2006-97094
13.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
,
2006
, “
Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
, pp.
2346
2357
.10.1002/polb.20863
14.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
,
2007
, “
On Mechanical Behavior and In-Plane Modeling of Constrained PEM Fuel Cell Membranes Subjected to Hydration and Temperature Cycles
,”
J. Power Sources
,
167
, pp.
366
377
.10.1016/j.jpowsour.2007.02.025
15.
Aindow
,
T. T.
, and
O’Neill
,
J.
,
2011
, “
Use of Mechanical Tests to Predict Durability of Polymer Fuel Cell Membranes Under Humidity Cycling
,”
J. Power Sources
,
196
, pp.
3851
3854
.10.1016/j.jpowsour.2010.12.031
16.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2011
, “
Hygro-Thermal Mechanical Behavior of Nafion During Constrained Swelling
,”
J. Power Sources
,
196
, pp.
3452
3460
.10.1016/j.jpowsour.2010.11.116
17.
Uchiyama
,
T.
,
Kato
,
M.
, and
Yoshida
,
T.
,
2012
, “
Buckling Deformation of Polymer Electrolyte Membrane and Membrane Electrode Assembly Under Humidity Cycles
,”
J. Power Sources
,
206
, pp.
37
46
.10.1016/j.jpowsour.2012.01.073
18.
Lai
,
Y. H.
,
Li
,
Y.
, and
Rock
,
J. A.
,
2010
, “
A Novel Full-Field Experimental Method to Measure the Local Compressibility of Gas Diffusion Media
,”
J. Power Sources
,
195
, pp.
3215
3223
.10.1016/j.jpowsour.2009.11.122
19.
Hizir
,
F. E.
,
Ural
,
S. O.
,
Kumbur
,
E. C.
, and
Mench
,
M. M.
,
2010
, “
Characterization of Interfacial Morphology in Polymer Electrolyte Fuel Cells: Micro-Porous Layer and Catalyst Layer Surfaces
,”
J. Power Sources
,
195
, pp.
3463
3471
.10.1016/j.jpowsour.2009.11.032
20.
Kleemann
,
J.
,
Finsterwalder
,
F.
, and
Tillmetz
,
W.
,
2009
, “
Characterisation of Mechanical Behavior and Coupled Electrical Properties of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
,
190
, pp.
92
102
.10.1016/j.jpowsour.2008.09.026
21.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng., A
,
425
, pp.
297
304
.10.1016/j.msea.2006.03.055
22.
Huang
,
C.
,
Liu
,
Z. S.
, and
Mu
,
D. Q.
,
2008
, “
The Mechanical Changes in the MEA of PEM Fuel Cells Due to Load Cycling
,”
ECS Trans.
,
16
(
2
), pp.
1987
1996
.10.1149/1.2982039
23.
Rong
,
F.
,
Huang
,
C.
,
Liu
,
Z. S.
,
Song
,
D.
, and
Wang
,
Q.
,
2008
, “
Microstructure Changes in the Catalyst Layers of PEM Fuel Cells Induced by Load Cycling—Part I: Mechanical Model
,”
J. Power Sources
,
175
, pp.
699
711
.10.1016/j.jpowsour.2007.10.006
24.
Poornesh
,
K. K.
,
Cho
,
C. D.
,
Lee
,
G. B.
, and
Tak
,
Y. S.
,
2010
, “
Gradation of Mechanical Properties in Gas Diffusion Electrode—Part 1: Influence of Nano-scale Heterogeneity in Catalyst Layer on Interfacial Strength Between Catalyst Layer and Membrane
,”
J. Power Sources
,
195
, pp.
2709
2717
.10.1016/j.jpowsour.2009.11.101
25.
Solasi
,
R.
,
Huang
,
X.
, and
Reifsnider
,
K.
,
2010
, “
Creep and Stress-Rupture of Nafion® Membranes Under Controlled Environment
,”
Mech. Mater.
,
42
, pp.
678
685
.10.1016/j.mechmat.2010.04.005
You do not currently have access to this content.