Long-term durability of the membrane electrode assembly (MEA) in proton exchange membrane (PEM) fuel cells is one of the major technological barriers to the commercialization of fuel cell vehicles. The cracks in the electrode layers of the MEA, referred to as mud-cracks, are potential contributors to the failure in the PEM. To investigate how these mud-cracks affect the mechanical durability of the MEA, pressure-loaded blister tests are performed at 90°C to determine the biaxial fatigue strength of Gore-Primea® series 57 MEA. In these volume-controlled tests, leaking rate is determined as a function of fatigue cycles. The failure is defined to occur when the leaking rate exceeds a specified threshold. Postmortem characterization using bubble point testing and field emission scanning electron microscopy (FESEM) was conducted to provide visual documentation of leaking failure sites. The analysis of the experimental leaking data indicates that the MEA has much shorter lifetimes at the same nominal stress levels than membrane samples without the electrode layers. FESEM photomicrographs of leaking locations identified via the bubble point testing show cracks in the membrane that are concentrated within the mud-cracks of the electrode layer. These two pieces of information indicate that the mud-cracks within the electrode layers contribute to the leaking failures of the MEA assembly. For the fuel cell industry, this study suggests there is an opportunity to reduce the likelihood of membrane pinhole failures by reducing the size and occurrence of the mud-cracks formed during the MEA processing or by increasing the fatigue resistance (including the notch sensitivity) of the membrane material within the MEA.

1.
Garland
,
N. L.
, and
Kopasz
,
J. P.
, 2007, “
The United States Department of Energy’s High Temperature, Low Relative Humidity Membrane Program
,”
J. Power Sources
0378-7753,
172
(
1
), pp.
94
99
.
3.
Liu
,
D.
, and
Case
,
S.
, 2006, “
Durability Study of Proton Exchange Membrane Fuel Cells Under Dynamic Testing Conditions With Cyclic Current Profile
,”
J. Power Sources
0378-7753,
162
(
1
), pp.
521
531
.
4.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
,
Myers
,
D.
,
Wilson
,
M.
,
Garzon
,
F.
,
Wood
,
D.
,
Zelenay
,
P.
,
More
,
K.
,
Stroh
,
K.
,
Zawodzinski
,
T.
,
Boncella
,
J.
,
McGrath
,
J. E.
,
Inaba
,
M.
,
Miyatake
,
K.
,
Hori
,
M.
,
Ota
,
K.
,
Ogumi
,
Z.
,
Miyata
,
S.
,
Nishikata
,
A.
,
Siroma
,
Z.
,
Uchimoto
,
Y.
,
Yasuda
,
K.
,
Kimijima
,
K
, and
Iwashita
,
N.
, 2007, “
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,” American Chemical Society,
Chemical Reviews
0009-2665,
107
(
10
), pp.
3904
3951
.
5.
Tang
,
H.
,
Peikang
,
S.
,
Jiang
,
S. P.
,
Wang
,
F.
, and
Pan
,
M.
, 2007, “
A Degradation Study of Nafion Proton Exchange Membrane of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
170
(
1
), pp.
85
92
.
6.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2007, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
0378-7753,
170
(
2
), pp.
345
358
.
7.
Bi
,
W.
, and
Fuller
,
T. F.
, 2008, “
Temperature Effects on PEM Fuel Cell Pt/C Catalyst Degradation
,”
J. Electrochem. Soc.
0013-4651,
155
(
2
), pp.
B215
B221
.
8.
Borup
,
R. L.
,
Davey
,
J. R.
,
Sarzon
,
F. H.
,
Wood
,
D. L.
, and
Inbody
,
M. A.
, 2006, “
PEM Fuel Cell Electrocatalyst Durability Measurements
,”
J. Power Sources
0378-7753,
163
, pp.
76
81
.
9.
Beuscher
,
U.
,
Cleghorn
,
S. J. C.
, and
Johnson
,
W. B.
, 2005, “
Challenges for PEM Fuel Cell Membranes
,”
Int. J. Energy Res.
0363-907X,
29
, pp.
1103
1112
.
10.
Liang
,
Z. X.
,
Zhao
,
T. S.
,
Xu
,
C.
, and
Xu
,
J. B.
, 2007, “
Microscopic Characterizations of Membrane Electrode Assemblies, Prepared Under Different Hot-Pressing Conditions
,”
Electrochim. Acta
0013-4686,
53
, pp.
894
902
.
11.
Stanic
,
V.
, and
Hoberecht
,
M.
, 2004, “
Mechanism of Pinhole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
,”
Proc.-Electrochem. Soc.
0161-6374,
21
, pp.
391
401
.
12.
Shao
,
Y.
,
Yin
,
G.
,
Wang
,
Z.
, and
Gao
,
Y.
, 2007, “
Proton Exchange Membrane Fuel Cell From Low Temperature to High Temperature: Material Challenges
,”
J. Power Sources
0378-7753,
167
, pp.
235
242
.
13.
Rong
,
F.
,
Huang
,
C.
,
Liu
,
Z. -S.
,
Song
,
D.
, and
Wang
,
Q.
, 2008, “
Microstructure Changes in the Catalyst Layers of PEM Fuel Cells Induced by Load Cycling Part I: Mechanical Model
,”
J. Power Sources
0378-7753,
175
, pp.
699
711
.
14.
Rong
,
F.
,
Huang
,
C.
,
Liu
,
Z. -S.
,
Song
,
D.
, and
Wang
,
Q.
, 2008, “
Microstructure Changes in the catalyst Layers of PEM Fuel Cells Induced by Load Cycling Part II: Simulation and Understanding
,”
J. Power Sources
0378-7753,
175
, pp.
712
723
.
15.
Gittleman
,
C. S.
,
Lai
,
Y. H.
, and
Miller
,
D. P.
, 2005, “
Durability of Perfluorosulfonic Acid Membranes for PEM Fuel Cells
,”
Extended Abstract in the AIChE 2005 Annual Meeting
, Cincinnati, OH.
16.
Lai
,
Y.
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
, 2005, “
Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, Michigan, May 23–25.
17.
Mathias
,
M. F.
,
Makharia
,
R.
,
Gasteiger
,
H. A.
,
Conley
,
J. J.
,
Fuller
,
T. J.
,
Gittleman
,
C. J.
,
Kocha
,
S. S.
,
Miller
,
D. P.
,
Mittelsteadt
,
C. K.
,
Xie
,
T.
,
Van
,
S. G.
, and
Yu
,
P. T.
, 2005, “
Two Fuel Cell Cars In Every Garage
,”
Electrochem. Soc. Interface
1064-8208,
14
, pp.
24
35
.
18.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
, 2006, “
Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
16
), pp.
2346
2357
.
19.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2007, “
On Mechanical Behavior and In-Plane Modeling of constrained PEM Fuel Cell Membranes Subjected to Hydration and Temperature
,”
J. Power Sources
0378-7753,
167
(
2
), pp.
366
377
.
20.
Tang
,
Y.
,
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2008, “
Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
175
(
2
), pp.
817
825
.
21.
Dillard
,
D. A.
,
Li
,
Y.
,
Grohs
,
J. R.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, 2009, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
6
(
3
), p.
031014
.
22.
Vielstich
,
W.
,
Lamm
,
A.
, and
Gastegier
,
H. A.
, 2003,
Handbook of Fuel Cells: Fundamentals, Technology, and Applications
,
Wiley
,
Chichester, England
.
You do not currently have access to this content.