Abstract

A new model for simulating battery temperature changes from the lower surface to the upper surface is proposed. The cell model is established with experimental calibration. Simultaneously, the cell-to-pack (CTP) model is established through experimental benchmarking. In addition, the thermal properties of CTP and an ordinary battery pack that has an enclosure on the basis were compared under four different working conditions. The results indicate that adding an enclosure to the CTP has little effect on the thermal performance of the battery pack. Adding an enclosure to the CTP hardly improves the temperature uniformity of the battery under cooling conditions; the temperature difference between the upper and lower surfaces of the batteries at both ends of the module drops by approximately 0.5 °C, while the central temperature difference is basically unchanged. Compared with fast charging without cooling, the battery temperature dropped by more than 12 °C under the fast charge condition with cooling. More importantly, the specific energy and packaging efficiency of the battery dropped from 160.27 Wh/kg and 73.1% to 148.72 Wh/kg and 67.8%, respectively, after the CTP was added with an enclosure.

References

1.
Tie
,
S. F.
, and
Tan
,
C. W.
,
2013
, “
A Review of Energy Sources and Energy Management System in Electric Vehicles
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
82
102
.
2.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
.
3.
Wang
,
Y.
,
Wang
,
L.
,
Li
,
M.
, and
Chen
,
Z.
,
2020
, “
A Review of Key Issues for Control and Management in Battery and Ultra-Capacitor Hybrid Energy Storage Systems
,”
eTransportation
,
4
, p.
100064
.
4.
Wang
,
X.
,
Wei
,
X.
,
Zhu
,
J.
,
Dai
,
H.
,
Zheng
,
Y.
,
Xu
,
X.
, and
Chen
,
Q.
,
2021
, “
A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management
,”
eTransportation
,
7
, p.
100093
.
5.
Piao
,
N.
,
Gao
,
X.
,
Yang
,
H.
,
Guo
,
Z.
,
Hu
,
G.
,
Cheng
,
H.-M.
, and
Li
,
F.
,
2022
, “
Challenges and Development of Lithium-Ion Batteries for Low Temperature Environments
,”
eTransportation
,
11
, p.
100145
.
6.
Dondelewski
,
O.
,
Szemberg O’Connor
,
T.
,
Zhao
,
Y.
,
Hunt
,
I. A.
,
Holland
,
A.
,
Hales
,
A.
,
Offer
,
G. J.
, and
Patel
,
Y.
,
2020
, “
The Role of Cell Geometry When Selecting Tab or Surface Cooling to Minimise Cell Degradation
,”
eTransportation
,
5
, p.
100073
.
7.
Ren
,
D.
,
Hsu
,
H.
,
Li
,
R.
,
Feng
,
X.
,
Guo
,
D.
,
Han
,
X.
,
Lu
,
L.
, et al
,
2019
, “
A Comparative Investigation of Aging Effects on Thermal Runaway Behavior of Lithium-Ion Batteries
,”
eTransportation
,
2
, p.
100034
.
8.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2019
, “
A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
100005
.
9.
Zichen
,
W.
, and
Changqing
,
D.
,
2021
, “
A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries
,”
Renew. Sustain. Energy Rev.
,
139
, p.
110685
.
10.
Kumar
,
P.
,
Chaudhary
,
D.
,
Varshney
,
P.
,
Varshney
,
U.
,
Yahya
,
S. M.
, and
Rafat
,
Y.
,
2020
, “
Critical Review on Battery Thermal Management and Role of Nanomaterial in Heat Transfer Enhancement for Electrical Vehicle Application
,”
J. Energy Storage
,
32
, p.
102003
.
11.
Cheng
,
L.
,
Garg
,
A.
,
Jishnu
,
A. K.
, and
Gao
,
L.
,
2020
, “
Surrogate Based Multi-objective Design Optimization of Lithium-Ion Battery Air-Cooled System in Electric Vehicles
,”
J. Energy Storage
,
31
, p.
101645
.
12.
Xu
,
Y.
,
Li
,
X.
,
Liu
,
X.
,
Wang
,
Y.
,
Wu
,
X.
, and
Zhou
,
D.
,
2021
, “
Experiment Investigation on a Novel Composite Silica Gel Plate Coupled With Liquid-Cooling System for Square Battery Thermal Management
,”
Appl. Therm. Eng.
,
184
, p.
116217
.
13.
Hong
,
S. H.
,
Jang
,
D. S.
,
Park
,
S.
,
Yun
,
S.
, and
Kim
,
Y.
,
2020
, “
Thermal Performance of Direct Two-Phase Refrigerant Cooling for Lithium-Ion Batteries in Electric Vehicles
,”
Appl. Therm. Eng.
,
173
, p.
115213
.
14.
Putra
,
N.
,
Sandi
,
A. F.
,
Ariantara
,
B.
,
Abdullah
,
N.
, and
Indra Mahlia
,
T. M.
,
2020
, “
Performance of Beeswax Phase Change Material (PCM) and Heat Pipe as Passive Battery Cooling System for Electric Vehicles
,”
Case Stud. Therm. Eng.
,
21
, p.
100655
.
15.
Lei
,
S.
,
Shi
,
Y.
, and
Chen
,
G.
,
2020
, “
Heat-Pipe Based Spray-Cooling Thermal Management System for Lithium-Ion Battery: Experimental Study and Optimization
,”
Int. J. Heat Mass Transfer
,
163
, p.
120494
.
16.
He
,
L.
,
Tang
,
X.
,
Luo
,
Q.
,
Liao
,
Y.
,
Luo
,
X.
,
Liu
,
J.
,
Ma
,
L.
,
Dong
,
D.
,
Gan
,
Y.
, and
Li
,
Y.
,
2022
, “
Structure Optimization of a Heat Pipe-Cooling Battery Thermal Management System Based on Fuzzy Grey Relational Analysis
,”
Int. J. Heat Mass Transfer
,
182
, p.
121924
.
17.
Sun
,
H.
, and
Dixon
,
R.
,
2014
, “
Development of Cooling Strategy for an Air Cooled Lithium-Ion Battery Pack
,”
J. Power Sources
,
272
, pp.
404
414
.
18.
Park
,
H.
,
2013
, “
A Design of air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
.
19.
Ismailov
,
K.
,
Adair
,
D.
,
Massalin
,
Y.
, and
Bakenov
,
Z.
,
2016
, “
On Using Splitter Plates and Flow Guide-Vanes for Battery Module Cooling
,”
ASME J. Heat Transfer-Trans. ASME
,
53
(
1
), pp.
1
10
.
20.
Xie
,
J.
,
Ge
,
Z.
,
Zang
,
M.
, and
Wang
,
S.
,
2017
, “
Structural Optimization of Lithium-ion Battery Pack With Forced Air Cooling System
,”
Appl. Therm. Eng.
,
126
, pp.
583
593
.
21.
Qin
,
P.
,
Sun
,
J.
,
Yang
,
X.
, and
Wang
,
Q.
,
2021
, “
Battery Thermal Management System Based on the Forced-Air Convection: A Review
,”
eTransportation
,
7
, p.
100097
.
22.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
23.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
The Numerical Investigation of Nanofluid Based Cylinder Battery Thermal Management Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
91
, pp.
374
384
.
24.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, “
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
41
.
25.
Chung
,
Y.
, and
Kim
,
M. S.
,
2019
, “
Thermal Analysis and Pack Level Design of Battery Thermal Management System With Liquid Cooling for Electric Vehicles
,”
Energy Convers. Manage.
,
196
, pp.
105
116
.
26.
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Zhang
,
G.
,
2015
, “
Experimental Investigation of Battery Thermal Management System for Electric Vehicle Based on Paraffin/Copper Foam
,”
J. Energy Inst.
,
88
(
3
), pp.
241
246
.
27.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
.
28.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-Ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1
), pp.
70
77
.
29.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
30.
Shen
,
K.
,
Sun
,
J.
,
Zheng
,
Y.
,
Xu
,
C.
,
Wang
,
H.
,
Wang
,
S.
,
Chen
,
S.
, and
Feng
,
X.
,
2022
, “
A Comprehensive Analysis and Experimental Investigation for the Thermal Management of Cell-to-Pack Battery System
,”
Appl. Therm. Eng.
,
211
, p.
118422
.
31.
Wang
,
C.
,
Li
,
C.
,
Wang
,
G.
,
Zhang
,
C.
, and
Cui
,
N.
,
2021
, “
Fast Identification Method for Thermal Model Parameters of Lithium-Ion Battery Based on Discharge Temperature Rise
,”
J. Energy Storage
,
44
, p.
103362
.
You do not currently have access to this content.