Abstract

The Pt–Fe2O3 nanoparticles embedded over N, P-doped carbon (Pt–Fe2O3/NPC) was successfully synthesized by chemical reduction method demonstrating an enhanced electrocatalytic efficacy in alkaline media toward oxygen reduction reaction (ORR). The surface morphology of Pt–Fe2O3/NPC has been characterized by electron microscopy scanning, X-ray diffraction, electron microscopy transmission, Raman spectra, and X-ray photoelectron spectroscopy. The ORR electrocatalytic activity of Pt–Fe2O3/NPC was found to be the superior mass activity of 0.120 mA µg−1, which are almost twice higher than those for Pt–Fe2O3/VC (0.068 mA µg−1) and Pt/C (0.061 mA µg−1) catalysts. The durability tests revealed that the Pt–Fe2O3/NPC exhibited enhanced stability observed from the order of electrochemical active surface area (ECA) loss determined as Pt–Fe2O3/NPC (45.67%) <Pt–Fe2O3/VC (62.5%) <(Pt/C (72.13%) after 5000 cycles. This present investigation unveiled a facile approach to develop the number of active sites with the combination between P–Fe2O3 and N, P-doped carbon for improved electrocatalytic performance toward ORR.

References

1.
Weththasinha
,
H. A. B. M. D.
,
Yan
,
Z.
,
Gao
,
L.
,
Li
,
Y.
,
Pan
,
D.
,
Zhang
,
M.
,
Lv
,
X.
,
Wei
,
W.
, and
Xie
,
J.
,
2017
, “
Nitrogen Doped Lotus Stem Carbon as Electrocatalyst Comparable to Pt/C for Oxygen Reduction Reaction in Alkaline Media
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20560
20567
. 10.1016/j.ijhydene.2017.06.011
2.
Xing
,
L.
,
Shi
,
W.
,
Su
,
H.
,
Xu
,
Q.
,
Das
,
P. K.
,
Mao
,
B.
, and
Scott
,
K.
,
2019
, “
Membrane Electrode Assemblies for PEM Fuel Cells: A Review of Functional Graded Design and Optimization
,”
Energy
,
177
, pp.
445
464
. 10.1016/j.energy.2019.04.084
3.
Bhuvanendran
,
N.
,
Ravichandran
,
S.
,
Xu
,
Q.
,
Pasupathi
,
S.
, and
Su
,
H.
,
2020
, “
Facile Preparation of a Surface-Enriched Pt Layer Over Pd/C as an Efficient Oxygen Reduction Catalyst With Enhanced Activity and Stability
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
3
), p.
031014
. 10.1115/1.4045978
4.
Xu
,
Q.
,
Zhang
,
F.
,
Xu
,
L.
,
Leung
,
P.
,
Yang
,
C.
, and
Li
,
H.
,
2017
, “
The Applications and Prospect of Fuel Cells in Medical Field: A Review
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
574
580
. 10.1016/j.rser.2016.09.042
5.
Yan
,
Z.
,
Gao
,
L.
,
Dai
,
C.
,
Zhang
,
M.
,
Lv
,
X.
, and
Shen
,
P. K.
,
2018
, “
Metal-Free Mesoporous Carbon With Higher Contents of Active N and S Codoping by Template Method for Superior ORR Efficiency to Pt/C
,”
Int. J. Hydrogen Energy
,
43
(
7
), pp.
3705
3715
. 10.1016/j.ijhydene.2018.01.013
6.
Yan
,
Z.
,
Xie
,
J.
,
Jing
,
J.
,
Zhang
,
M.
,
Wei
,
W.
, and
Yin
,
S.
,
2012
, “
MoO2 Nanocrystals Down to 5 nm as Pt Electrocatalyst Promoter for Stable Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
15948
15955
. 10.1016/j.ijhydene.2012.08.033
7.
Peng
,
K.
,
Bhuvanendran
,
N.
,
Ravichandran
,
S.
,
Xu
,
Z.
,
Zhang
,
W.
,
Ma
,
Q.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2020
, “
Sewage Sludge-Derived Fe- and N-Containing Porous Carbon as Efficient Support for Pt Catalyst With Superior Activity Towards Methanol Electrooxidation
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
9795
9802
. 10.1016/j.ijhydene.2020.01.140
8.
Tong
,
X.
,
Zhang
,
J.
,
Zhang
,
G.
,
Wei
,
Q.
,
Chenitz
,
R. g.
,
Claverie
,
J. P.
, and
Sun
,
S.
,
2017
, “
Ultrathin Carbon-Coated Pt/Carbon Nanotubes: A Highly Durable Electrocatalyst for Oxygen Reduction
,”
Chem. Mater.
,
29
(
21
), pp.
9579
9587
. 10.1021/acs.chemmater.7b04221
9.
Pharkya
,
P.
,
Alfantazi
,
A.
, and
Farhat
,
Z.
,
2005
, “
Fabrication Using High-Energy Ball-Milling Technique and Characterization of Pt-Co Electrocatalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
3
), pp.
171
178
. 10.1115/1.1895985
10.
Bhuvanendran
,
N.
,
Ravichandran
,
S.
,
Zhang
,
W.
,
Ma
,
Q.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2020
, “
Highly Efficient Methanol Oxidation on Durable PtxIr/MWCNT Catalysts for Direct Methanol Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6447
6460
. 10.1016/j.ijhydene.2019.12.176
11.
Marinoiu
,
A.
,
Raceanu
,
M.
,
Carcadea
,
E.
,
Varlam
,
M.
,
Balan
,
D.
,
Ion-Ebrasu
,
D.
,
Stefanescu
,
I.
, and
Enachescu
,
M.
,
2017
, “
Iodine-Doped Graphene for Enhanced Electrocatalytic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
3
), p.
031001
. 10.1115/1.4036684
12.
Oluigbo
,
C. J.
,
Xie
,
M.
,
Ullah
,
N.
,
Yang
,
S. S.
,
Zhao
,
W. T.
,
Zhang
,
M. M.
,
Lu
,
X. M.
,
Xu
,
Y. G.
, and
Xie
,
J. M.
,
2019
, “
Novel One-Step Synthesis of Nickel Encapsulated Carbon Nanotubes as Efficient Electrocatalyst for Hydrogen Evolution Reaction
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
2685
2693
. 10.1016/j.ijhydene.2018.11.215
13.
Xing
,
L.
,
Xu
,
Y.
,
Penga
,
Ž
,
Xu
,
Q.
,
Su
,
H.
,
Shi
,
W.
, and
Barbir
,
F.
,
2020
, “
A Novel Flow Field With Controllable Pressure Gradient to Enhance Mass Transport and Water Removal of PEM Fuel Cells
,”
AlChE J.
,
66
(
6
), p.
e16957
. 10.1002/aic.16957
14.
Sun
,
M.
,
Dong
,
Y.
,
Zhang
,
G.
,
Qu
,
J.
, and
Li
,
J.
,
2014
, “
α-Fe2O3 Spherical Nanocrystals Supported on CNTs as Efficient Non-noble Electrocatalysts for the Oxygen Reduction Reaction
,”
J. Mater. Chem. A
,
2
(
33
), pp.
13635
13640
. 10.1039/C4TA02172J
15.
Ren
,
S.
,
Ma
,
S.
,
Yang
,
Y.
,
Mao
,
Q.
, and
Hao
,
C.
,
2015
, “
Hydrothermal Synthesis of Fe2O3/Polypyrrole/Graphene Oxide Composites as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Alkaline Electrolyte
,”
Electrochim. Acta
,
178
, pp.
179
189
. 10.1016/j.electacta.2015.07.181
16.
Su
,
Y.
,
Jiang
,
H.
,
Zhu
,
Y.
,
Yang
,
X.
,
Shen
,
J.
,
Zou
,
W.
,
Chen
,
J.
, and
Li
,
C.
,
2014
, “
Enriched Graphitic N-Doped Carbon-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
,”
J. Mater. Chem. A
,
2
(
20
), pp.
7281
7287
. 10.1039/C4TA00029C
17.
Wang
,
R.
,
Li
,
X.
,
Li
,
H.
,
Wang
,
Q.
,
Wang
,
H.
,
Wang
,
W.
,
Kang
,
J.
,
Chang
,
Y.
, and
Lei
,
Z.
,
2011
, “
Highly Stable and Effective Pt/Carbon Nitride (CNx) Modified SiO2 Electrocatalyst for Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
5775
5781
. 10.1016/j.ijhydene.2010.12.132
18.
Zhu
,
T.
,
Du
,
C.
,
Liu
,
C.
,
Yin
,
G.
, and
Shi
,
P.
,
2011
, “
SiO2 Stabilized Pt/C Cathode Catalyst for Proton Exchange Membrane Fuel Cells
,”
Appl. Surf. Sci.
,
257
(
6
), pp.
2371
2376
. 10.1016/j.apsusc.2010.09.105
19.
Wu
,
G.
,
Nelson
,
M. A.
,
Mack
,
N. H.
,
Ma
,
S.
,
Sekhar
,
P.
,
Garzon
,
F. H.
, and
Zelenay
,
P.
,
2010
, “
Titanium Dioxide-Supported Non-precious Metal Oxygen Reduction Electrocatalyst
,”
Chem. Commun.
,
46
(
40
), pp.
7489
7491
. 10.1039/c0cc03088k
20.
Tiido
,
K.
,
Alexeyeva
,
N.
,
Couillard
,
M.
,
Bock
,
C.
,
MacDougall
,
B. R.
, and
Tammeveski
,
K.
,
2013
, “
Graphene–TiO2 Composite Supported Pt Electrocatalyst for Oxygen Reduction Reaction
,”
Electrochim. Acta
,
107
, pp.
509
517
. 10.1016/j.electacta.2013.05.155
21.
Sun
,
L.
,
Zhou
,
L.
,
Yang
,
C.
, and
Yuan
,
Y.
,
2017
, “
CeO2 Nanoparticle-Decorated Reduced Graphene Oxide as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
,”
Int. J. Hydrogen Energy
,
42
(
22
), pp.
15140
15148
. 10.1016/j.ijhydene.2017.04.257
22.
Yu
,
S.
,
Liu
,
Q.
,
Yang
,
W.
,
Han
,
K.
,
Wang
,
Z.
, and
Zhu
,
H.
,
2013
, “
Graphene–CeO2 Hybrid Support for Pt Nanoparticles as Potential Electrocatalyst for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
94
, pp.
245
251
. 10.1016/j.electacta.2013.01.149
23.
Wang
,
C.
,
Daimon
,
H.
, and
Sun
,
S.
,
2009
, “
Dumbbell-Like Pt− Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction
,”
Nano Lett.
,
9
(
4
), pp.
1493
1496
. 10.1021/nl8034724
24.
Sánchez-Padilla
,
N. M.
,
Montemayor
,
S. M.
, and
Varela
,
F. R.
,
2012
, “
An Easy Route to Synthesize Novel Fe3O4@ Pt Core-Shell Nanostructures With High Electrocatalytic Activity
,”
J. New Mater. Electrochem. Syst.
,
15
(
3
), pp.
171
179
. 10.14447/jnmes.v15i3.62
25.
Robinson
,
D. A.
, and
Stevenson
,
K. J.
,
2013
, “
Uniform Epitaxial Growth of Pt on Fe3O4 Nanoparticles; Synergetic Enhancement to Pt Activity for the Oxygen Reduction Reaction
,”
J. Mater. Chem. A
,
1
(
43
), pp.
13443
13453
. 10.1039/c3ta12987j
26.
El-Deab
,
M. S.
, and
Ohsaka
,
T.
,
2006
, “
Manganese Oxide Nanoparticles Electrodeposited on Platinum Are Superior to Platinum for Oxygen Reduction
,”
Angew. Chem. Int. Ed.
,
45
(
36
), pp.
5963
5966
. 10.1002/anie.200600692
27.
Chen
,
W.
,
Ge
,
L.
,
Ding
,
L. J.
,
Xu
,
Y. H.
,
You
,
F. H.
, and
Wang
,
K.
,
2019
, “
Modification of Pyridinic N and O-Rich Defects in a Bifunctional Electrocatalyst with Enhanced Electrocatalytic Performance
,”
J. Alloys Compd.
,
789
, pp.
874
880
. 10.1016/j.jallcom.2019.03.128
28.
Zhang
,
J.
, and
Dai
,
L.
,
2015
, “
Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction
,”
ACS Catal.
,
5
(
12
), pp.
7244
7253
. 10.1021/acscatal.5b01563
29.
Zhao
,
Z.
,
Li
,
M.
,
Zhang
,
L.
,
Dai
,
L.
, and
Xia
,
Z.
,
2015
, “
Design Principles for Heteroatom-Doped Carbon Nanomaterials as Highly Efficient Catalysts for Fuel Cells and Metal–air Batteries
,”
Adv. Mater.
,
27
(
43
), pp.
6834
6840
. 10.1002/adma.201503211
30.
Zhu
,
C.
,
Li
,
H.
,
Fu
,
S.
,
Du
,
D.
, and
Lin
,
Y.
,
2016
, “
Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures
,”
Chem. Soc. Rev.
,
45
(
3
), pp.
517
531
. 10.1039/C5CS00670H
31.
Wang
,
R.
,
Jia
,
J.
,
Wang
,
H.
,
Wang
,
Q.
,
Ji
,
S.
, and
Tian
,
Z.
,
2013
, “
CN x-Modified Fe3O4 as Pt Nanoparticle Support for the Oxygen Reduction Reaction
,”
J. Solid State Electrochem.
,
17
(
4
), pp.
1021
1028
. 10.1007/s10008-012-1948-4
32.
Schonvogel
,
D.
,
Hülstede
,
J.
,
Wagner
,
P.
,
Dyck
,
A.
,
Agert
,
C.
, and
Wark
,
M.
,
2018
, “
Durability of Electrocatalysts for ORR: Pt on Nanocomposite of Reduced Graphene Oxide With FTO Versus Pt/C
,”
J. Electrochem. Soc.
,
165
(
6
), pp.
F3373
F3382
. 10.1149/2.0361806jes
33.
Ma
,
J.
,
Habrioux
,
A.
, and
Alonso-Vante
,
N.
,
2013
, “
Enhanced HER and ORR Behavior on Photodeposited Pt Nanoparticles Onto Oxide–Carbon Composite
,”
J. Solid State Electrochem.
,
17
(
7
), pp.
1913
1921
. 10.1007/s10008-013-2046-y
34.
Elezovic
,
N. R.
,
Radmilovic
,
V. R.
, and
Krstajic
,
N. V.
,
2016
, “
Platinum Nanocatalysts on Metal Oxide Based Supports for Low Temperature Fuel Cell Applications
,”
RSC Adv.
,
6
(
8
), pp.
6788
6801
. 10.1039/C5RA22403A
35.
Gebauer
,
C.
,
Fischer
,
J.
,
Wassner
,
M.
,
Diemant
,
T.
,
Bansmann
,
J.
,
Hüsing
,
N.
, and
Behm
,
R. J.
,
2014
, “
Novel N, C Doped Ti(IV)-Oxides as Pt-Free Catalysts for the O2 Reduction Reaction
,”
Electrochim. Acta
,
146
, pp.
335
345
. 10.1016/j.electacta.2014.08.056
36.
Estudillo-Wong
,
L. A.
,
Luo
,
Y.
,
Díaz-Real
,
J. A.
, and
Alonso-Vante
,
N.
,
2016
, “
Enhanced Oxygen Reduction Reaction Stability on Platinum Nanoparticles Photo-Deposited Onto Oxide-Carbon Composites
,”
Appl. Catal. B
,
187
, pp.
291
300
. 10.1016/j.apcatb.2016.01.030
37.
Teng
,
X.
, and
Yang
,
H.
,
2003
, “
Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films From Pt@ Fe2O3 Core−Shell Nanoparticles
,”
J. Am. Chem. Soc.
,
125
(
47
), pp.
14559
14563
. 10.1021/ja0376700
38.
Fu
,
Y.
,
Wang
,
J.
,
Yu
,
H.-Y.
,
Li
,
X.
,
Wang
,
H.
,
Tian
,
J.-H.
, and
Yang
,
R.
,
2017
, “
Enhanced Electrocatalytic Performances of α-Fe2O3 Pseudo-Nanocubes for Oxygen Reduction Reaction in Alkaline Solution With Conductive Coating
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20711
20719
. 10.1016/j.ijhydene.2017.07.057
39.
Li
,
Y.
,
Zhu
,
C.
,
Lu
,
T.
,
Guo
,
Z.
,
Zhang
,
D.
,
Ma
,
J.
, and
Zhu
,
S.
,
2013
, “
Simple Fabrication of a Fe2O3/Carbon Composite for Use in a High-Performance Lithium Ion Battery
,”
Carbon
,
52
, pp.
565
573
. 10.1016/j.carbon.2012.10.015
40.
Zhao
,
B.
,
Liu
,
R.
,
Cai
,
X.
,
Jiao
,
Z.
,
Wu
,
M.
,
Ling
,
X.
,
Lu
,
B.
, and
Jiang
,
Y.
,
2014
, “
Nanorod-Like Fe2O3/Graphene Composite as a High-Performance Anode Material for Lithium Ion Batteries
,”
J. Appl. Electrochem.
,
44
(
1
), pp.
53
60
. 10.1007/s10800-013-0599-1
41.
Ferrero
,
G. A.
,
Fuertes
,
A. B.
,
Sevilla
,
M.
, and
Titirici
,
M.-M.
,
2016
, “
Efficient Metal-Free N-Doped Mesoporous Carbon Catalysts for ORR by a Template-Free Approach
,”
Carbon
,
106
, pp.
179
187
. 10.1016/j.carbon.2016.04.080
42.
Wei
,
W.
,
Liang
,
H.
,
Parvez
,
K.
,
Zhuang
,
X.
,
Feng
,
X.
, and
Müllen
,
K.
,
2014
, “
Nitrogen-Doped Carbon Nanosheets with Size-Defined Mesopores as Highly Efficient Metal-Free Catalyst for the Oxygen Reduction Reaction
,”
Angew. Chem. Int. Ed.
,
53
(
6
), pp.
1570
1574
. 10.1002/anie.201307319
43.
Li
,
X.
,
Fang
,
Y.
,
Lin
,
X.
,
Tian
,
M.
,
An
,
X.
,
Fu
,
Y.
,
Li
,
R.
,
Jin
,
J.
, and
Ma
,
J.
,
2015
, “
MOF Derived Co3O4 Nanoparticles Embedded in N-Doped Mesoporous Carbon Layer/MWCNT Hybrids: Extraordinary Bi-functional Electrocatalysts for OER and ORR
,”
J. Mater. Chem. A
,
3
(
33
), pp.
17392
17402
. 10.1039/C5TA03900B
44.
Lv
,
J.-J.
,
Zheng
,
J.-N.
,
Li
,
S.-S.
,
Chen
,
L.-L.
,
Wang
,
A.-J.
, and
Feng
,
J.-J.
,
2014
, “
Facile Synthesis of Pt–Pd Nanodendrites and Their Superior Electrocatalytic Activity
,”
J. Mater. Chem. A
,
2
(
12
), pp.
4384
4390
. 10.1039/C3TA14304J
45.
Yao
,
D.
,
Jao
,
T.-C.
,
Zhang
,
W.
,
Xu
,
L.
,
Xing
,
L.
,
Ma
,
Q.
,
Xu
,
Q.
,
Li
,
H.
,
Pasupathi
,
S.
, and
Su
,
H.
,
2018
, “
In-situ Diagnosis on Performance Degradation of High Temperature Polymer Electrolyte Membrane Fuel Cell by Examining Its Electrochemical Properties Under Operation
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
21006
21016
. 10.1016/j.ijhydene.2018.09.103
46.
Liu
,
Y.-T.
,
Yuan
,
Q.-B.
,
Duan
,
D.-H.
,
Zhang
,
Z.-L.
,
Hao
,
X.-G.
,
Wei
,
G.-Q.
, and
Liu
,
S.-B.
,
2013
, “
Electrochemical Activity and Stability of Core–Shell Fe2O3/Pt Nanoparticles for Methanol Oxidation
,”
J. Power Sources
,
243
, pp.
622
629
. 10.1016/j.jpowsour.2013.06.029
47.
Xu
,
X.
,
Shi
,
C.
,
Li
,
Q.
,
Chen
,
R.
, and
Chen
,
T.
,
2017
, “
Fe–N-Doped Carbon Foam Nanosheets With Embedded Fe2O3 Nanoparticles for Highly Efficient Oxygen Reduction in Both Alkaline and Acidic Media
,”
RSC Adv.
,
7
(
24
), pp.
14382
14388
. 10.1039/C6RA27826D
48.
Lin
,
L.
,
Yang
,
Z. K.
,
Jiang
,
Y.-F.
, and
Xu
,
A.-W.
,
2016
, “
Nonprecious Bimetallic (Fe, Mo)–N/C Catalyst for Efficient Oxygen Reduction Reaction
,”
ACS Catal.
,
6
(
7
), pp.
4449
4454
. 10.1021/acscatal.6b00535
49.
Jiang
,
W.-J.
,
Gu
,
L.
,
Li
,
L.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Zhang
,
L.-J.
,
Wang
,
J.-Q.
,
Hu
,
J.-S.
,
Wei
,
Z.
, and
Wan
,
L.-J.
,
2016
, “
Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx
,”
J. Am. Chem. Soc.
,
138
(
10
), pp.
3570
3578
. 10.1021/jacs.6b00757
50.
Dhavale
,
V. M.
,
Singh
,
S. K.
,
Nadeema
,
A.
,
Gaikwad
,
S. S.
, and
Kurungot
,
S.
,
2015
, “
Nanocrystalline Fe–Fe2O3 Particle-Deposited N-Doped Graphene as an Activity-Modulated Pt-Free Electrocatalyst for Oxygen Reduction Reaction
,”
Nanoscale
,
7
(
47
), pp.
20117
20125
. 10.1039/C5NR04929F
51.
Chen
,
Z.
,
Chen
,
W.
,
Jia
,
D.
,
Liu
,
Y.
,
Zhang
,
A.
,
Wen
,
T.
,
Liu
,
J.
,
Ai
,
Y.
,
Song
,
W.
, and
Wang
,
X.
,
2018
, “
N, P, and S Codoped Graphene-Like Carbon Nanosheets for Ultrafast Uranium (VI) Capture With High Capacity
,”
Adv. Sci.
,
5
(
10
), p.
1800235
. 10.1002/advs.201800235
52.
Zhang
,
A.
,
Wu
,
J.
,
Xue
,
L.
,
Yan
,
S.
, and
Zeng
,
S.
,
2020
, “
Probing Heteroatomic Dopant-Activity Synergy Over Co3O4/Doped Carbon Nanotube Electrocatalysts for Oxygen Reduction Reaction
,”
Inorg. Chem.
,
59
(
1
), pp.
403
414
. 10.1021/acs.inorgchem.9b02663
53.
Yin
,
L.
,
Chen
,
D.
,
Feng
,
M.
,
Ge
,
L.
,
Yang
,
D.
,
Song
,
Z.
,
Fan
,
B.
,
Zhang
,
R.
, and
Shao
,
G.
,
2015
, “
Hierarchical Fe2O3@WO3 Nanostructures With Ultrahigh Specific Surface Areas: Microwave-Assisted Synthesis and Enhanced H2S-Sensing Performance
,”
RSC Adv.
,
5
(
1
), pp.
328
337
. 10.1039/C4RA10500A
54.
Hosseini
,
M.
, and
Mahmoodi
,
R.
,
2017
, “
The Comparison of Direct Borohydride-Hydrogen Peroxide Fuel Cell Performance With Membrane Electrode Assembly Prepared by Catalyst Coated Membrane Method and Catalyst Coated Gas Diffusion Layer Method Using Ni@ Pt/C as Anodic Catalyst
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10363
10375
. 10.1016/j.ijhydene.2017.02.022
55.
Lai
,
L.
,
Huang
,
G.
,
Wang
,
X.
, and
Weng
,
J.
,
2011
, “
Preparation of Pt Nanoparticle-Loaded Three-Dimensional Fe3O4/Carbon With High Electro-Oxidation Activity
,”
Carbon
,
49
(
5
), pp.
1581
1587
. 10.1016/j.carbon.2010.12.040
56.
Jayasayee
,
K.
,
Van Veen
,
J. R.
,
Manivasagam
,
T. G.
,
Celebi
,
S.
,
Hensen
,
E. J.
, and
De Bruijn
,
F. A.
,
2012
, “
Oxygen Reduction Reaction (ORR) Activity and Durability of Carbon Supported PtM (Co, Ni, Cu) Alloys: Influence of Particle Size and Non-noble Metals
,”
Appl. Catal. B
,
111
, pp.
515
526
. 10.1016/j.apcatb.2011.11.003
57.
Lee
,
M. H.
, and
Do
,
J. S.
,
2009
, “
Kinetics of Oxygen Reduction Reaction on Corich Core-Ptrich Shell/C Electrocatalysts
,”
J. Power Sources
,
188
(
2
), pp.
353
358
. 10.1016/j.jpowsour.2008.12.051
58.
Xu
,
X.
,
Dai
,
Y.
,
Yu
,
J.
,
Hao
,
L.
,
Duan
,
Y.
,
Sun
,
Y.
,
Zhang
,
Y.
,
Lin
,
Y.
, and
Zou
,
J.
,
2017
, “
Metallic State FeS Anchored (Fe)/Fe3O4/N-Doped Graphitic Carbon With Porous Spongelike Structure as Durable Catalysts for Enhancing Bioelectricity Generation
,”
ACS Appl. Mater. Interfaces
,
9
(
12
), pp.
10777
10787
. 10.1021/acsami.7b01531
59.
Mamtani
,
K.
,
Bruening
,
C.
, and
Co
,
A.
,
2017
, “
A Comparison of Oxygen Reduction Reaction (ORR) Performance for Iron-Nitrogen-Carbon (FeNC) Catalysts in Acidic and Alkaline Media
,”
Res. Rev. Electrochem.
,
8
, pp.
1
9
.
60.
Ravichandran
,
S.
,
Bhuvanendran
,
N.
,
Zhang
,
W.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2020
, “
Comprehensive Studies on the Effect of Reducing Agents on Electrocatalytic Activity and Durability of Pt/C for Oxygen Reduction Reaction
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
3
), p.
031012
. 10.1115/1.4045785
61.
Ghosh
,
A.
,
Ghosh
,
S.
,
Seshadhri
,
G. M.
, and
Ramaprabhu
,
S.
,
2019
, “
Green Synthesis of Nitrogen-Doped Self-assembled Porous Carbon-Metal Oxide Composite Towards Energy and Environmental Applications
,”
Sci. Rep.
,
9
(
1
), p.
5187
. 10.1038/s41598-019-41700-5
You do not currently have access to this content.