Water management is critical for the operation of a polymer electrolyte membrane fuel cell (PEMFC). For the purposes of high power and long working-lifetime of PEMFCs, external humidifiers are always utilized as a necessary part of balance of plants to keep the imported air and fuel wet. However, they have several disadvantages, and it is beneficial to remove them so as to reduce system volume and to enhance the cold-starting capability. In this paper, a self-humidified PEMFC of an active area 250 cm2 and cell number 320 is proposed and investigated. The imported dry air on the cathode side is mixed with moisty exhaust gas by using a recirculation valve, and the dry hydrogen on the anode side is humidified by back-diffusion water through the membrane. A nonlinear model is set up based on mass transport and energy conservation equations to capture dynamics of gases in the supply and exhaust manifolds, the gas diffusion layers (GDLs), and the membrane. An analysis is conducted to investigate the influences of parameters on dynamic and stable performances. Simulation results show that system performances can be greatly affected by parameters such as air stoichiometry, current density, exhaust gas recirculation (EGR) ratio, and membrane thickness. By accurately controlling the EGR ratio and carefully selecting design and operation parameters, it is probably for a PEMFC without an external humidifier to have similar system efficiency compared to a traditional system.

References

1.
Larminie
,
J.
, and
Dicks
,
A.
,
2002
,
Fuel Cell Systems Explained
,
Wiley
, Chichester,
UK
.
2.
Li
,
J.
,
Fang
,
C.
, and
Xu
,
L.
,
2014
, “
Current Status and Trends of the Research and Development for Fuel Cell Vehicles
,”
J. Autom. Saf. Energy
,
5
(1), pp.
17
29
.
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.
5.
Wu
,
J.
,
Yuan
,
X. Z.
,
Martin
,
J. J.
,
Wang
,
H.
,
Zhang
,
J.
,
Shen
,
J.
, Wu, S., and Merida, W.,
2008
, “
A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies
,”
J. Power Sources
,
184
(1), pp.
104
119
.
6.
Kim
,
B. J.
, and
Kim
,
M. S.
,
2012
, “
Studies on the Cathode Humidification by Exhaust Gas Recirculation for PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(5), pp.
4290
4299
.
7.
Jung
,
S. H.
,
Kim
,
S. L.
,
Kim
,
M. S.
,
Park
,
Y. S.
, and
Lim
,
T. W.
,
2007
, “
Experimental Study of Gas Humidification With Injectors for Automotive PEM Fuel Cell Systems
,”
J. Power Sources
,
170
(
2
), pp.
324
333
.
8.
Kim
,
B. J.
,
Kim
,
S. I.
,
Byun
,
S. Y.
,
Kim
,
M. S.
,
Kim
,
H. Y.
, and
Kwon
,
H. R.
,
2010
, “
Humidification of Air Using Water Injector and Cyclone Separator
,”
Trans. Korean Soc. Mech Eng. B
,
34
(
5
), pp.
491
498
.
9.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
10.
Büchi
,
F. N.
, and
Srinivasa
,
S.
,
1997
, “
Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases
,”
J. Electrochem. Soc.
,
144
(8), pp.
2767
2772
.
11.
Yang
,
T.
,
Shi
,
P.
, and
Du
,
C.
,
2006
, “
Study on Self-Humidified PEMFC With Reactant Circulation
,”
Electrochim. Acta
,
51
(26), pp.
5618
5625
.
12.
Su
,
H.
,
Xu
,
L.
,
Zhu
,
H.
,
Wu
,
Y.
,
Yang
,
L.
,
Liao
,
S.
,
Song
,
H.
,
Liang
,
Z.
, and
Birss
,
V.
,
2010
, “
Self-Humidification of a PEM Fuel Cell Using a Novel Pt/SiO2/C Anode Catalyst
,”
Int. J. Hydrogen Energy
,
35
(15), pp.
7874
7880
.
13.
Legrand
,
P. M.
,
Morin
,
A.
,
Mareau
,
V. H.
, and
Gonon
,
L.
,
2012
, “
Impact of Gas Stoichiometry on Water Management and Fuel Cell Performance of a Sulfonated Poly(Ether Ketone) Membrane
,”
J. Power Sources
,
206
, pp.
161
170
.
14.
Riascos
,
L. A. M.
,
2008
, “
Relative Humidity Control in Polymer Electrolyte Membrane Fuel Cells Without Extra Humidification
,”
J. Power Sources
,
184
(1), pp.
204
211
.
15.
Li
,
Y.
,
Zhou
,
Q.
, and
Zhang
,
X.
,
2014
, “
Numerical Analysis of Steady State Self-Humidification Performance of PEMFC
,”
CIESE J.
,
65
(
5
), pp.
1893
1899
.
16.
Berning
,
T.
,
Odgaard
,
M.
, and
Kær
,
S. K.
,
2011
, “
Water Balance Simulations of a Polymer-Electrolyte Membrane Fuel Cell Using a Two-Fluid Model
,”
J. Power Sources
,
196
(15), pp.
6305
6317
.
17.
Berning
,
T.
, and
Kær
,
S. K.
,
2012
, “
Low Stoichiometry Operation of a Proton Exchange Membrane Fuel Cell Employing the Interdigitated Flow Field—A Modeling Study
,”
Int. J. Hydrogen Energy
,
37
(10), pp.
8477
8489
.
18.
Bao
,
C.
,
Ouyang
,
M.
, and
Yi
,
B.
,
2006
, “
Modeling and Control of Air Stream and Hydrogen Flow With Recirculation in a PEM Fuel Cell System—I: Control-Oriented Modeling
,”
Int. J. Hydrogen Energy
,
31
(13), pp.
1879
1896
.
19.
Dadvar
,
M.
, and
Afshari
,
E.
,
2014
, “
Analysis of Design Parameters in Anodic Recirculation System Based on Ejector Technology for PEM Fuel Cells: A New Approach in Designing
,”
Int. J. Hydrogen Energy
,
39
(23), pp.
12061
12073
.
20.
Badami
,
M.
, and
Mura
,
M.
,
2010
, “
Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
51
(3), pp.
553
560
.
21.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Leakage Effects on the Performance Characteristics of a Regenerative Blower for the Hydrogen Recirculation of a PEM Fuel Cell
,”
Energy Convers. Manage.
,
55
, pp.
20
25
.
22.
Uno
,
M.
,
Shimada
,
T.
, and
Tanaka
,
K.
,
2011
, “
Reactant Recirculation System Utilizing Pressure Swing for Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
(5), pp.
2558
2566
.
23.
Promislow
,
K.
,
St-Pierre
,
J.
, and
Wetton
,
B.
,
2011
, “
A Simple, Analytic Model of Polymer Electrolyte Membrane Fuel Cell Anode Recirculation at Operating Power Including Nitrogen Crossover
,”
J. Power Sources
,
196
(23), pp.
10050
10056
.
24.
Yoshida
,
T.
, and
Kojima
,
K.
,
2015
, “
Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society
,”
Electrochem. Soc. Interface
,
24
(
2
), pp.
45
49
.
25.
Cheng
,
S.
,
Li
,
J.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2014
, “Air Supply System Model With Exhaust Gas Recirculation for Improving the Life of Fuel Cell,” IEEE Conference and Expo Transportation Electrification Asia-Pacific (
ITEC-AP
), Beijing, China, Aug. 31–Sept. 3, pp. 1–6.
26.
Hu
,
J.
,
Xu
,
L.
,
Li
,
J.
,
Ouyang
,
M.
,
Cheng
,
S.
, and
Fang
,
C.
,
2014
, “Water Management in a Self-Humidifying PEM Fuel Cell System by Exhaust Gas Recirculation,” IEEE Conference and Expo Transportation Electrification Asia-Pacific (
ITEC-AP
), Beijing, China, Aug. 31–Sept. 3, pp. 1–6.
27.
Wu
,
H. W.
,
2016
, “
A Review of Recent Development: Transport and Performance Modeling of PEM Fuel Cells
,”
Appl. Energy
,
165
, pp.
81
106
.
28.
Carnes
,
B.
,
Spernjak
,
D.
,
Luo
,
G.
,
Hao
,
L.
,
Chen
,
K. S.
,
Wang
,
C. Y.
,
Mukundan
,
R.
, and
Borup
,
R. L.
,
2013
, “
Validation of a Two-Phase Multidimensional Polymer Electrolyte Membrane Fuel Cell Computational Model Using Current Distribution Measurements
,”
J. Power Sources
,
236
, pp.
126
137
.
29.
Iranzo
,
A.
,
Boillat
,
P.
, and
Rosa
,
F.
,
2014
, “
Validation of a Three Dimensional PEM Fuel Cell CFD Model Using Local Liquid Water Distributions Measured With Neutron Imaging
,”
Int. J. Hydrogen Energy
,
39
(13), pp.
7089
7099
.
30.
Pukrushpan
,
J. T.
,
2003
, “
Modeling and Control of Fuel Cell Systems and Fuel
Processors,”
Ph.D. thesis
, The University of Michigan, Ann Arbor, MI.http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf
31.
Soltani
,
M.
, and
Bathaee
,
S. M. T.
,
2010
, “
Development of an Empirical Dynamic Model for a Nexa PEM Fuel Cell Power Module
,”
Energy Convers. Manage.
,
51
(12), pp.
2492
2500
.
32.
Ziogou
,
C.
,
Voutetakis
,
S.
,
Papadopoulou
,
S.
, and
Georgiadis
,
M. C.
,
2011
, “
Modeling, Simulation and Experimental Validation of a PEM Fuel Cell System
,”
Comput. Chem. Eng.
,
35
(9), pp.
1886
1900
.
33.
Liso
,
V.
,
Araya
,
S. S.
,
Olesen
,
A. C.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2016
, “
Modeling and Experimental Validation of Water Mass Balance in a PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
41
(4), pp.
3079
3092
.
34.
Saygılı
,
Y.
,
Kıncal
,
S.
, and
Eroglu
,
I.
,
2015
, “
Development and Modeling for Process Control Purposes in PEMs
,”
Int. J. Hydrogen Energy
,
40
(24), pp.
7886
7894
.
35.
Schultze
,
M.
, and
Horn
,
J.
,
2012
, “Optimization Approach for Cathode Exhaust Gas Conditioning of a Multifunctional PEM Fuel Cell System for the Application in Aircraft,” Deutscher Luft- und Raumfahrtkongress, Berlin, Sept. 11, Paper No.
281322
.http://www.dglr.de/publikationen/2012/281322.pdf
36.
Schultze
,
M.
, and
Horn
,
J.
,
2016
, “
Modeling, State Estimation and Nonlinear Model Predictive Control of Cathode Exhaust Gas Mass Flow for PEM Fuel Cells
,”
Control Eng. Pract.
,
49
, pp.
76
86
.
37.
Hillstrom
,
E. T.
,
Canova
,
M.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2013
, “
Modeling the Cathode Pressure Dynamics in the Buckeye Bullet II 540 kW Hydrogen PEM Fuel Cell System
,”
J. Power Sources
,
241
, pp.
33
45
.
38.
McCain
,
B. A.
,
Stefanopoulou
,
A. G.
, and
Kolmanovsky
,
I. V.
,
2008
, “
On the Dynamics and Control of Through-Plane Water Distributions in PEM Fuel Cells
,”
Chem. Eng. Sci.
,
63
(17), pp.
4418
4432
.
39.
Chen
,
L.
,
Feng
,
Y. L.
,
Song
,
C. X.
,
Chen
,
L.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2013
, “
Multi-Scale Modeling of Proton Exchange Membrane Fuel Cell by Coupling Finite Volume Method and Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
63
, pp.
268
283
.
40.
Franco
,
A. A.
,
Coulon
,
R.
,
de Morais
,
R. F.
,
Cheah
,
S. K.
,
Kachmar
,
A.
, and
Gabriel
,
M. A.
,
2009
, “
Mutiscale Modeling Prediction of PEMFC MEA Durability Under Automotive-Operating Conditions
,”
Electrochem. Soc. Trans.
,
25
(
1
), pp.
65
79
.
41.
Eschenbach
,
M. P.
,
Coulon
,
R.
,
Franco
,
A. A.
,
Kallo
,
J.
, and
Bessler
,
W. G.
,
2011
, “
Multi-Scale Simulation of Fuel Cells: From the Cell to the System
,”
Solid State Ionics
,
192
(1), pp.
615
618
.
42.
Xu
,
L.
,
Yang
,
F.
,
Li
,
J.
,
Ouyang
,
M.
, and
Hua
,
J.
,
2012
, “
Real Time Optimal Energy Management Strategy Targeting at Minimizing Daily Operation Cost for a Plug-In Fuel Cell City Bus
,”
Int. J. Hydrogen Energy
,
37
(20), pp.
15380
15392
.
43.
Xu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
,
Yang
,
F.
,
Lu
,
L.
, and
Hua
,
J.
,
2013
, “
Application of Pontryagin's Minimal Principle to the Energy Management Strategy of Plugin Fuel Cell Electric Vehicles
,”
Int. J. Hydrogen Energy
,
38
(24), pp.
10104
10115
.
44.
Fang
,
C.
,
2014
, “
Research on the Control System for Vehicular PEM Fuel Cell Engines
,” Master's thesis, Tsinghua University, Beijing, China.
45.
Xu
,
L.
,
Li
,
J.
,
Ouyang
,
M.
,
Hua
,
J.
, and
Yang
,
G.
,
2014
, “
Multi-Mode Control Strategy for Fuel Cell Electric Vehicles Regarding Fuel Economy and Durability
,”
Int. J. Hydrogen Energy
,
39
(5), pp.
2374
2389
.
46.
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2015
, “
Energy Flow Modeling and Real-Time Control Design Basing on Mean Values for Maximizing Driving Mileage of a Fuel Cell Bus
,”
Int. J. Hydrogen Energy
,
40
(
43
), pp.
15052
15066
.
47.
Zhang
,
W.
,
Li
,
J.
,
Xu
,
L.
,
Ouyang
,
M.
,
Liu
,
Y.
,
Han
,
Q.
, and
Li
,
K.
,
2017
, “
Optimization for a Fuel Cell/Battery/Capacity Tram With Equivalent Consumption Minimization Strategy
,”
Energy Convers. Manage.
,
134
, pp.
59
69
.
48.
Zhang
,
W.
,
Xu
,
L.
,
Li
,
J.
,
Ouyang
,
M.
,
Liu
,
Y.
,
Han
,
Q.
, and
Li
,
Y.
,
2017
, “
Comparison of Daily Operation Strategies for a Fuel Cell/Battery Tram
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18532
18539
.
49.
Xu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
,
Yang
,
F.
,
Lu
,
L.
, and
Hua
,
J.
,
2013
, “
Optimal Sizing of Plug-In Fuel Cell Electric Vehicles Using Models of Vehicle Performance and System Cost
,”
Appl. Energy
,
103
, pp.
477
487
.
50.
Zhang
,
W.
,
Li
,
J.
,
Xu
,
L.
,
Ouyang
,
M.
,
Liu
,
Y.
,
Han
,
Q.
, and
Li
,
K.
,
2016
, “
Comparison Study on Life-Cycle Costs of Different Trams Powered by Fuel Cell Systems and Others
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
16577
16591
.
51.
Pukrushpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
,
2004
, “
Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(1), pp. 14–25.
52.
Xu
,
L.
,
Fang
,
C.
,
Hu
,
J.
,
Cheng
,
S.
,
Li
,
J.
,
Ouyang
,
M.
, and
Lehnert
,
W.
,
2017
, “
Parameter Extraction of Polymer Electrolyte Membrane Fuel Cell Based on Quasi-Dynamic Model and Periphery Signal
,”
Energy
,
122
, pp.
675
690
.
53.
Xu
,
L.
,
Fang
,
C.
,
Hu
,
J.
,
Cheng
,
S.
,
Li
,
J.
,
Ouyang
,
M.
, and
Lehnert
,
W.
,
2017
, “
Parameter Extraction and Uncertainty Analysis of a Proton Exchange Membrane Fuel Cell System Based on Monte Carlo Simulation
,”
Int. J. Hydrogen Energy
,
42
(
4
), pp.
2309
2326
.
54.
Fang
,
C.
,
Li
,
J.
,
Xu
,
L.
,
Ouyang
,
M.
,
Hu
,
J.
, and
Cheng
,
S.
,
2015
, “
Model-Based Fuel Pressure Regulation Algorithm for a Hydrogen-Injected PEM Fuel Cell Engine
,”
Int. J. Hydrogen Energy
,
40
(
43
), pp.
14942
14951
.
55.
Cheng
,
S.
,
Fang
,
C.
,
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2015
, “
Model-Based Temperature Regulation of a PEM Fuel Cell System on a City Bus
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13566
13575
.
56.
Xu
,
L.
,
Hu
,
J.
,
Cheng
,
S.
,
Fang
,
C.
,
Li
,
J.
,
Ouyang
,
M.
, and
Lehnert
,
W.
,
2017
, “
Robust Control of Internal States in a Polymer Electrolyte Membrane Fuel Cell Air-Feed System by Considering Actuator Properties
,”
Int. J. Hydrogen Energy
,
42
(
18
), pp.
13171
13191
.
57.
Zhao
,
X.
,
Xu
,
L.
,
Li
,
J.
,
Fang
,
C.
, and
Ouyang
,
M.
,
2017
, “
Faults Diagnosis for PEM Fuel Cell System Based on Multi-Sensor Signals and Principle Component Analysis Method
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18524
18531
.
58.
Fang
,
C.
,
Xu
,
L.
,
Cheng
,
S.
,
Li
,
J.
,
Jiang
,
H.
, and
Ouyang
,
M.
,
2017
, “
Sliding-Mode-Based Temperature Regulation of a Proton Exchange Membrane Fuel Cell Test Bench
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11745
11757
.
59.
Cheng
,
S.
,
Xu
,
L.
,
Wu
,
K.
,
Fang
,
C.
,
Hu
,
J.
,
Li
,
J.
, and
Ouyang
,
M.
,
2017
, “
Optimal Warm-Up Control Strategy of the PEMFC System on a City Bus Aimed at Improving Efficiency
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11632
11643
.
60.
Hu
,
J.
,
Xu
,
L.
,
Li
,
J.
,
Fang
,
C.
,
Cheng
,
S.
,
Ouyang
,
M.
, and
Hong
,
P.
,
2015
, “
Model-Based Estimation of Liquid Saturation in Cathode Gas Diffusion Layer and Current Density Difference Under Proton Exchange Membrane Fuel Cell Flooding
,”
Int. J. Hydrogen Energy
,
40
(
41
), pp.
14187
14201
.
61.
Hu
,
J.
,
Li
,
J.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2016
, “
Analytical Calculation and Evaluation of Water Transport Through a Proton Exchange Membrane Fuel Cell Based on a One-Dimensional Model
,”
Energy
,
111
, pp.
869
883
.
62.
Xu
,
L.
,
Hu
,
J.
,
Cheng
,
S.
,
Fang
,
C.
,
Li
,
J.
,
Ouyang
,
M.
, and
Lehnert
,
W.
,
2017
, “
Nonlinear Observation of Internal States of Fuel Cell Cathode Utilizing a High-Order Sliding-Mode Algorithm
,”
J. Power Sources
,
356
, pp.
56
71
.
63.
Hong
,
P.
,
Li
,
J.
,
Xu
,
L.
,
Ouyang
,
M.
, and
Fang
,
C.
,
2016
, “
Modeling and Simulation of Parallel DC/DC Converters for Online AC Impedance Estimation of PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3004
3014
.
64.
Hong
,
P.
,
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2017
, “
Modeling and Analysis of Internal Water Transfer Behavior of PEM Fuel Cell of Large Surface Area
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18540
18550
.
65.
Cheng
,
S.
,
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2016
, “
Development of a PEM Fuel Cell City Bus With a Hierarchical Control System
,”
Energies
,
9
(
6
), p.
417
.
66.
Li
,
J.
,
Hu
,
Z.
,
Xu
,
L.
,
Ouyang
,
M.
,
Fang
,
C.
,
Hu
,
J.
,
Cheng
,
S.
,
Hong
,
P.
,
Zhang
,
W.
, and
Jiang
,
H.
,
2016
, “
Fuel Cell System Degradation Analysis of a Chinese Plug-In Hybrid Fuel Cell City Bus
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15295
15310
.
67.
Jiang
,
H.
,
Xu
,
L.
,
Fang
,
C.
,
Zhao
,
X.
,
Hu
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2017
, “
Experimental Study on Dual Recirculation of Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18551
18559
.
68.
Natarajan
,
D.
, and
Nguyen
,
T. V.
,
2001
, “
A Two-Dimensional Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
,
148
(
12
), pp.
A1324
A1335
.
69.
Hoffman, J. D., and Zucrow, M. J., 1976,
Gas Dynamics
, Wiley, New York.
70.
del Real
,
A. J.
,
Arce
,
A.
, and
Bordons
,
C.
,
2007
, “
Development and Experimental Validation of a PEM Fuel Cell Dynamic Model
,”
J. Power Sources
,
173
(1), pp.
310
324
.
71.
Anantaraman
,
A. V.
, and
Gargner
,
C. L.
,
1996
, “
Studies on Ion-Exchange Membranes: Effect of Humidity on the Conductivity of Nafion
,”
J. Electroanal. Chem.
,
414
(2), pp.
115
120
.
You do not currently have access to this content.