The performance of current solid oxide fuel cells (SOFCs) was evaluated in terms of the cell designs and the physicochemical properties of the component materials such as the electrode and electrolyte in order to demonstrate the potentials of state-of-the-art SOFC technology for the widespread use of SOFCs. A flat tubular type SOFC stack for residential use was analyzed as a standard case of a production version in terms of stack volume, weight, and material cost. The power density and power generation efficiency were also evaluated by model estimation. A microtubular type SOFC was evaluated as an example of an advanced cell design. The assessment of the cell design can pinpoint performance advantages of the microtubular type in stack volume, weight, material cost, volumetric power density, and efficiency. In addition, we attempted to demonstrate an analysis for the concurrent comparison of the impact of cell designs and material properties on cell performance by using volumetric power density as a common assessment criterion. Through the assessment with the state-of-the-art SOFC technology, it is possible to make a quantitative comparison of the significances of cell design and material property. The present assessment suggests that the development of cell design is a consistent approach to improving cell and stack performance. In this way, the proposed assessment can provide hints to a reliable research strategy for improving cell performance and realizing the widespread use of SOFCs.

References

1.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Application
, 1st ed.,
Elsevier Advanced Technology
,
New York
.
2.
Payne
,
R.
,
Love
,
J.
, and
Kah
,
M.
,
2009
, “
Generating Electricity at 60% Electrical Efficiency From l–2 kWe SOFC Products
,”
ECS Trans.
,
25
(
2
), pp.
231
239
.10.1149/1.3205530
3.
Shimano
,
J.
,
Yamazaki
,
H.
,
Mizutani
,
Y.
,
Hisada
,
K.
,
Ukai
,
K.
,
Yokoyama
,
M.
,
Nagai
,
K.
,
Kashima
,
S.
,
Orishima
,
H.
,
Nakatuka
,
S.
,
Uwani
,
H.
, and
Hirakawa
,
M.
,
2007
, “
Development Status of a Planer Type of 1 kW Class SOFC System
,”
ECS Trans.
,
7
(
1
), pp.
141
148
.10.1149/1.2729083
4.
Leah
,
R.
,
Bone
,
A.
,
Selcuk
,
A.
,
Corcoran
,
D.
,
Lankin
,
M.
,
Dehaney-Steven
,
Z.
,
Selby
,
M.
, and
Whalen
,
P.
,
2011
, “
Development of Highly Robust, Volume-Manufacturable Metal-Supported SOFCs for Operation Below 600 °C
,”
ECS Trans.
,
35
(
1
), pp.
351
367
.10.1149/1.3570010
5.
Suzuki
,
M.
,
2003
, “
MEA/Cell Preparation Methods: Japan/Asia
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
W.
Vielstich
,
H. A.
Gasteiger
, and
A.
Lamm
, eds.,
John
Wiley & Sons
,
Chichester
, UK, pp.
1032
1036
.
6.
Singhal
,
S. C.
,
2002
, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
,
152–153
, pp.
405
410
.10.1016/S0167-2738(02)00349-1
7.
Singhal
,
S. C.
,
2000
, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
,
135
, pp.
305
313
.10.1016/S0167-2738(00)00452-5
8.
Orui
,
H.
,
Watanabe
,
K.
, and
Arakawa
,
M.
,
2002
, “
Electrochemical Characteristics of Tubular Flat-Plate-SOFCs Fabricated by Co-Firing Cathode Substrate and Electrolyte
,”
J. Power Sources
,
112
, pp.
90
97
.10.1016/S0378-7753(02)00346-4
9.
Lu
,
Y.
, and
Schaefer
,
L.
,
2006
, “
Numerical Study of a Flat-Tube High Power Density Solid Oxide Fuel Cell Part II: Cell Performance and Stack Optimization
,”
J. Power Sources
,
153
, pp.
68
75
.10.1016/j.jpowsour.2005.03.189
10.
Vora
,
S. D.
,
2007
, “
Development of High Power Density Seal-Less SOFCs
,”
ECS Trans.
,
7
(
1
), pp.
149
154
.10.1149/1.2729084
11.
Yamaguchi
,
T.
,
Shimizu
,
S.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2009
, “
Design and Fabrication of a Novel Electrode-Supported Honeycomb SOFC
,”
J. Am. Ceram. Soc.
,
92
(
S1
), pp.
S107
S111
.10.1111/j.1551-2916.2008.02688.x
12.
Kendall
,
K.
, and
Palin
,
M.
,
1998
, “
A Small Solid Oxide Fuel Cell Demonstrator for Microelectronic Applications
,”
J. Power Sources
,
71
, pp.
268
270
.10.1016/S0378-7753(97)02761-4
13.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
,
2005
, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
,
145
, pp.
428
434
.10.1016/j.jpowsour.2005.01.079
14.
Otake
,
T.
,
Yokoyarna
,
M.
,
Nagai
,
K.
,
Ukai
,
K.
, and
Mizutani
,
Y.
,
2007
, “
Effect of GDC Electrolyte Thickness on the Performance of Anode Supported Micro Tubular SOFC
,”
ECS Trans.
,
7
(
1
), pp.
551
554
.10.1149/1.2729135
15.
Yamada
,
K.
,
Takahashi
,
N.
, and
Wen
,
C. J.
,
2002
, “
Design and Evaluation of Electric Vehicle Using Solid Oxide Fuel Cells
,”
J. Chem. Eng. Jpn.
,
35
(
12
), pp.
1290
1297
.10.1252/jcej.35.1290
16.
Suzuki
,
T.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2006
, “
Fabrication and Characterization of Micro Tubular SOFCs for Operation in the Intermediate Temperature
,”
J. Power Sources
,
160
, pp.
73
77
.10.1016/j.jpowsour.2006.01.037
17.
Sin
,
Y. W.
,
Galloway
,
K.
,
Roy
,
B.
,
Sammes
,
N. M.
,
Song
,
J. H.
,
Suzuki
,
T.
, and
Awano
,
M.
,
2011
, “
The Properties and Performance of Micro-Tubular (Less Than 2.0 mm o.d.) Anode Supported Solid Oxide Fuel Cell (SOFC)
,”
Int. J. Hydrogen Energy
,
36
, pp.
1882
1889
.10.1016/j.ijhydene.2009.12.167
18.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Singhal
,
S.C.
,
2004
, “
U.S. Distributed Generation Fuel Cell Program
,”
J. Power Sources
,
131
, pp.
79
85
.10.1016/j.jpowsour.2004.01.021
19.
Boivin
,
J. C.
, and
Mairesse
,
G.
,
1998
, “
Recent Material Developments in Fast Oxide Ion Conductors
,”
Chem. Mater.
,
10
, pp.
2870
2888
.10.1021/cm980236q
20.
Zhu
,
W. Z.
, and
Deevi
,
S. C.
,
2003
, “
A Review on the Status of Anode Materials for Solid Oxide Fuel Cells
,”
Mater. Sci. Eng. A
,
362
, pp.
228
239
.10.1016/S0921-5093(03)00620-8
21.
Sun
,
C.
,
Hui
,
R.
, and
Roller
,
J.
,
2010
, “
Cathode Materials for Solid Oxide Fuel Cells: A Review
,”
J. Solid State Electrochem.
,
14
, pp.
1125
1144
.10.1007/s10008-009-0932-0
22.
Kendall
,
K.
,
2005
, “
Progress in Solid Oxide Fuel Cell Materials
,”
Inter. Mater. Rev.
,
50
(
5
), pp.
257
264
.10.1179/174328005X41131
23.
Suzuki
,
M.
,
Sogi
,
T.
,
Higaki
,
K.
,
Ono
,
T.
,
Takahashi
,
N.
,
Shimazu
,
K.
, and
Shigehisa
,
T.
,
2007
, “
Development of SOFC Residential Cogeneration System At Osaka Gas and Kyocera
,”
ECS Trans.
,
7
(
1
), pp.
27
30
.10.1149/1.2729069
24.
Suzuki
,
M.
,
Iwata
,
S.
,
Higaki
,
K.
,
Inoue
,
S.
,
Shigehisa
,
T.
,
Miyachi
,
I.
,
Nakabayashi
,
H.
, and
Shimazu
,
K.
,
2009
, “
Development and Field Test Results of Residential SOFC CHP System
,”
ECS Trans.
,
25
(
2
), pp.
143
147
.10.1149/1.3205519
25.
Koi
,
M.
,
Yamashita
,
S.
, and
Matsuzaki
,
Y.
,
2007
, “
Development of Segmented-in-Series Cell-Stacks With Flat-Tubular Substrates
,”
ECS Trans.
,
7
(
1
), pp.
235
243
.10.1149/1.2729097
26.
Matsuzaki
,
Y.
,
Hatae
,
T.
, and
Yamashita
,
S.
,
2009
, “
Long-Term Stability of Segmented Type Cell-Stacks Developed for Residential Use Less Than 1 kW
,”
ECS Trans.
,
25
(
2
), pp.
159
166
.10.1149/1.3205521
27.
Iwamoto
,
T.
,
2007
, Japan patent, September 27:P2009-87539A.
28.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2006
, “
Ferrite-Based Perovskites As Cathode Materials for Anode-Supported Solid Oxide Fuel Cells Part II. Influence of the CGO Interlayer
,”
Solid State Ionics
,
177
, pp.
2103
2107
.10.1016/j.ssi.2005.12.010
29.
Murray
,
E. P.
,
Sever
,
M. J.
, and
Barnett
,
S. A.
,
2002
, “
Electrochemical Performance of (La,Sr)(Co,Fe)O3 Composite Cathode
,”
Solid State Ionics
,
148
, pp.
27
34
.10.1016/S0167-2738(02)00102-9
30.
Zhu
,
W. Z.
, and
Deevi
,
S. C.
,
2003
, “
Development of Interconnect Materials for Solid Oxide Fuel Cells
,”
Mater. Sci. Eng. A
,
348
, pp.
227
243
.10.1016/S0921-5093(02)00736-0
31.
Yasuda
,
N.
,
Uehara
,
T.
,
Okamoto
,
M.
,
Aoki
,
C.
,
Ohno
,
T.
, and
Toji
,
A.
,
2009
, “
Improvement of Oxidation Resistance of Fe-Cr Ferritic Alloy Sheets for SOFC Interconnects
,”
ECS Trans.
,
25
(
2
), pp.
1447
1453
.10.1149/1.3205677
32.
Larring
,
Y.
, and
Norby
,
T.
,
2000
, “
Spinel and Perovskite Functional Layers Between Plansee Metallic Interconnect (Cr-5 wt % Fe-1 wt % Y2O3) and Ceramic (La0.85Sr0.15)0.91MnO3 Cathode Materials for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3251
3256
.10.1149/1.1393891
33.
Prette
,
A. L. G.
,
Cologna
,
M.
,
Sglavo
,
V.
, and
Raj
,
R.
,
2011
, “
Flash-Sintering of Co2MnO4 Spinel for Solid Oxide Fuel Cell Applications
,”
J. Power Sources
,
196
, pp.
2061
2065
.10.1016/j.jpowsour.2010.10.036
34.
Lee
,
A. L.
,
Zabransky
,
R. F.
, and
Huber
,
W. J.
,
1990
, “
Internal Reforming Development for Solid Oxide Fuel Cells
”,
Ind. Eng. Chem. Res.
,
29
, pp.
766
773
.10.1021/ie00101a009
35.
Mason
,
E. A.
, and
Malinauskas
,
A. P.
,
1983
,
Gas Transport in Porous Media: The Dusty-Gas Model
(Chemical Engineering Monographs),
Elsevier
,
Amsterdam
.
36.
Kim
,
J. W.
,
Virkar
,
A. V.
,
Fung
,
K. Z.
,
Mehta
,
K.
, and
Singhal
,
S. C.
,
1999
, “
Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
146
(
1
), pp.
69
78
.10.1149/1.1391566
37.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.10.1016/S0378-7753(00)00556-5
38.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems (Cambridge Series in Chemical Engineering)
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
39.
Kudo
,
T.
, and
Obayashi
,
H.
,
1976
, “
Mixed Electrical Conduction in the Fluorite-Type Ce1−xGdxO2−2/x
,”
J. Electrochem. Soc.
,
123
, pp.
415
419
.10.1149/1.2132840
40.
Handbook of 15710 Chemical Products
,
2010
,
The Chemical Daily Co. Ltd
,
Tokyo
.
41.
Ippommatsu
,
M.
,
Sasaki
,
H.
, and
Otoshi
,
S.
,
1996
, “
Evaluation of the Cost Performance of the SOFC Cell in the Market
,”
Int. J. Hydrogen Energy
,
21
, pp.
129
135
.10.1016/0360-3199(95)00037-2
42.
van Herle
,
J.
,
McEvoy
,
A. J.
, and
Thampi
,
K. R.
,
1994
, “
Conductivity Measurements of Various Yttria-Stabilized Zirconia Samples
,”
J. Mater. Sci.
,
29
, pp.
3691
3701
.10.1007/BF00357336
43.
Fu
,
C.
,
Sun
,
K.
,
Zhang
,
N.
,
Chen
,
X.
, and
Zhou
,
D.
,
2007
, “
Electrochemical Characteristics of LSCF-SDC Composite Cathode for Intermediate Temperature SOFC
,”
Electrochim. Acta
,
52
, pp.
4589
4594
.10.1016/j.electacta.2007.01.001
44.
Esquirol
,
A.
,
Brandon
,
N. P.
,
Kilner
,
J. A.
, and
Mogensen
,
M.
,
2004
, “
Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs
,”
J. Electrochem. Soc.
,
151
, pp.
A1847
A1855
.10.1149/1.1799391
45.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
, pp.
333
348
.10.1016/0378-7753(93)01833-4
46.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
, pp.
120
136
.10.1016/j.jpowsour.2004.06.040
47.
Cui
,
D.
,
Yang
,
C.
,
Huang
,
K.
, and
Chen
,
F.
,
2010
, “
Effect of Testing Configurations and Cell Geometries on the Performance of a SOFC: A Modeling Approach
,”
Int. J. Hydrogen Energy
,
35
, pp.
10495
10504
.10.1016/j.ijhydene.2010.08.010
48.
Wang
,
L.
,
Merkle
,
R.
, and
Maier
,
J.
,
2010
, “
Surface Kinetics and Mechanism of Oxygen Incorporation Into Ba1−xSrxCoyFe1−yO3−δ SOFC Microelectrodes
,”
J. Electrochem. Soc.
,
157
, pp.
B1802
B1808
.10.1149/1.3494224
49.
Ishihara
,
T.
,
Matsuda
,
H.
, and
Takita
,
Y.
,
1995
, “
Effects of Rare Earth Cations Doped for La Site on the Oxide Ionic Conductivity of LaGaO3-Based Perovskite Type Oxide
,”
Solid State Ionics
,
79
, pp.
147
151
.10.1016/0167-2738(95)00054-A
50.
Ni
,
M.
,
Leung
,
D. Y. C.
, and
Leung
,
M. K. H.
,
2008
, “
Modeling Methane Fed Solid Oxide Fuel Cells: Comparison Between Proton Conducting Electrolyte and Oxygen Ion Conducting Electrolyte
,”
J. Power Sources
,
183
, pp.
133
142
.10.1016/j.jpowsour.2008.04.073
You do not currently have access to this content.