Abstract

Exergy-based control strategies for ground hybrid electric vehicles (HEVs) enable to pursue unconventional optimization goals that are inaccessible when standard energy-based modeling frameworks based on fuel consumption minimization are used. In this work, we formulate and solve offline and online exergy-based optimization strategies for military HEVs aimed at the minimization of genset exergy destruction and thermal emissions to increase vehicle efficiency and minimize the risk of thermal imaging detection, respectively. We refer to the offline version of these strategies as exergy minimization strategies (ExMSs). Adaptive ExMSs (A-ExMSs) are then formulated for online implementation. Moreover, charge increasing (CI) ExMSs and A-ExMSs are developed to charge the battery as much as possible during a driving mission that is followed by a silent watch phase. To assess the performance of the proposed strategies, the results obtained by the ExMSs and A-ExMSs are compared to the benchmark solutions obtained by Dynamic Programming.

References

1.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
), pp.
249
253
.10.1016/j.energy.2006.07.002
2.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2012
,
Exergy: Energy, Environment and Sustainable Development
,
Newnes
, Oxford, UK.
3.
Moorhouse
,
D. J.
, and
Camberos
,
J. A.
,
2011
,
Exergy Analysis and Design Optimization for Aerospace Vehicles and Systems
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
4.
Naserbegi
,
A.
, and
Aghaie
,
M.
,
2021
, “
Exergy Optimization of Nuclear-Solar Dual Proposed Power Plant Based on Gwo Algorithm
,”
Prog. Nucl. Energy
,
140
, p.
103925
.10.1016/j.pnucene.2021.103925
5.
Kallio
,
S.
, and
Siroux
,
M.
,
2020
, “
Energy Analysis and Exergy Optimization of Photovoltaic-Thermal Collector
,”
Energies
,
13
(
19
), p.
5106
.10.3390/en13195106
6.
Dong
,
Z.
,
Li
,
D.
,
Wang
,
Z.
, and
Sun
,
M.
,
2018
, “
A Review on Exergy Analysis of Aerospace Power Systems
,”
Acta Astronaut.
,
152
, pp.
486
495
.10.1016/j.actaastro.2018.09.003
7.
Evola
,
G.
,
Costanzo
,
V.
, and
Marletta
,
L.
,
2018
, “
Exergy Analysis of Energy Systems in Buildings
,”
Buildings
,
8
(
12
), p.
180
.10.3390/buildings8120180
8.
Razmara
,
M.
,
Maasoumy
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R.
, III
,
2015
, “
Optimal Exergy Control of Building HVAC System
,”
Appl. Energy
,
156
, pp.
555
565
.10.1016/j.apenergy.2015.07.051
9.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.10.1016/j.pecs.2005.10.001
10.
Razmara
,
M.
,
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R.
, III
,
2016
, “
Optimal Exergy-Based Control of Internal Combustion Engines
,”
Appl. Energy
,
183
, pp.
1389
1403
.10.1016/j.apenergy.2016.09.058
11.
Dettù
,
F.
,
Pozzato
,
G.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2021
, “
Exergy-Based Modeling Framework for Hybrid and Electric Ground Vehicles
,”
Appl. Energy
,
300
, p.
117320
.10.1016/j.apenergy.2021.117320
12.
Kramer
,
D. M.
, and
Parker
,
G. G.
,
2011
, “
Current State of Military Hybrid Vehicle Development
,”
Int. J. Electr. Hybrid Veh.
,
3
(
4
), pp.
369
387
.10.1504/IJEHV.2011.044373
13.
Mittal
,
V.
,
Novoselich
,
B.
, and
Rodriguez
,
A.
,
2022
, “
Hybridization of U.S. Army Combat Vehicles
,”
SAE
Paper No. 2022-01-0371.10.4271/2022-01-0371
14.
Onori
,
S.
,
Serrao
,
L.
, and
Rizzoni
,
G.
,
2016
,
Hybrid Electric Vehicles: Energy Management Strategies
,
Springer
, London, UK.
15.
Acquarone
,
M.
,
Pozzato
,
G.
,
James
,
C.
, and
Onori
,
S.
,
2023
, “
Exergy Management Strategies for Hybrid Electric Ground Vehicles: A Dynamic Programming Solution
,”
ASME J. Dyn. Syst., Meas., Control
,
146
(
3
), p.
031004
.10.1115/1.4063610
16.
Hofman
,
T.
,
Steinbuch
,
M.
,
Van Druten
,
R.
, and
Serrarens
,
A.
,
2007
, “
Rule-Based Energy Management Strategies for Hybrid Vehicles
,”
Int. J. Electr. Hybrid Veh.
,
1
(
1
), pp.
71
94
.10.1504/IJEHV.2007.014448
17.
Sampathnarayanan
,
B.
,
Serrao
,
L.
,
Onori
,
S.
,
Rizzoni
,
G.
, and
Yurkovich
,
S.
,
2009
, “
Model Predictive Control as an Energy Management Strategy for Hybrid Electric Vehicles
,”
ASME
Paper No. DSCC2009-2671.10.1115/DSCC2009-2671
18.
Biswas
,
A.
,
Acquarone
,
M.
,
Wang
,
H.
,
Miretti
,
F.
,
Misul
,
D. A.
, and
Emadi
,
A.
,
2024
, “
Safe Reinforcement Learning for Energy Management of Electrified Vehicle With Novel Physics-Informed Exploration Strategy
,”
IEEE Trans. Transp. Electrif.
, 10(4) p.
1
.10.1109/TTE.2024.3361462
19.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2009
, “
ECMS as a Realization of Pontryagin's Minimum Principle for HEV Control
,”
2009 American Control Conference
, Chicago, IL, June 10–12, pp.
3964
3969
.10.1109/ACC.2009.5160628
20.
Onori
,
S.
, and
Serrao
,
L.
,
2011
, “
On Adaptive-Ecms Strategies for Hybrid Electric Vehicles
,”
2nd International Scientific Conference on Hybrid and Electric Vehicles RHEVE 2011
, Malmaison, France, Dec. 6–7, pp.
1
10
.https://pangea.stanford.edu/ERE/pdf/OnoriPDF/Conferences/28.pdf
21.
Mamun
,
A.-A.
,
Liu
,
Z.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2019
, “
An Integrated Design and Control Optimization Framework for Hybrid Military Vehicle Using Lithium-Ion Battery and Supercapacitor as Energy Storage Devices
,”
IEEE Trans. Transp. Electrif.
,
5
(
1
), pp.
239
251
.10.1109/TTE.2018.2869038
22.
Kim
,
Y.
,
Salvi
,
A.
,
Siegel
,
J. B.
,
Filipi
,
Z. S.
,
Stefanopoulou
,
A. G.
, and
Ersal
,
T.
,
2014
, “
Hardware-in-the-Loop Validation of a Power Management Strategy for Hybrid Powertrains
,”
Control Eng. Pract.
,
29
, pp.
277
286
.10.1016/j.conengprac.2014.04.008
23.
Mi
,
C.
, and
Masrur
,
M. A.
,
2017
,
Hybrid Electric Vehicles: Principles and Applications With Practical Perspectives
,
Wiley
, Hoboken, NJ.
24.
Catenaro
,
E.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2021
, “
Experimental Analysis and Analytical Modeling of Enhanced-Ragone Plot
,”
Appl. Energy
,
291
, p.
116473
.10.1016/j.apenergy.2021.116473
25.
Catenaro
,
E.
, and
Onori
,
S.
,
2021
, “
Experimental Data of Lithium-Ion Batteries Under Galvanostatic Discharge Tests at Different Rates and Temperatures of Operation
,”
Data Brief
,
35
, p.
106894
.10.1016/j.dib.2021.106894
26.
Allam
,
A.
,
Onori
,
S.
,
Marelli
,
S.
, and
Taborelli
,
C.
,
2015
, “
Battery Health Management System for Automotive Applications: A Retroactivity-Based Aging Propagation Study
,” 2015 American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
703
716
.10.1109/ACC.2015.7170817
27.
Chapman
,
S.
,
2005
,
Electric Machinery Fundamentals
,
The McGraw-Hill Companies
, New York.
28.
Pozzato
,
G.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2022
, “
Mean-Value Exergy Modeling of Internal Combustion Engines: Characterization of Feasible Operating Regions
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
6
), p.
061009
.10.1115/1.4053945
29.
Kessels
,
J. T.
,
Koot
,
M. W.
,
Van Den Bosch
,
P. P.
, and
Kok
,
D. B.
,
2008
, “
Online Energy Management for Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
57
(
6
), pp.
3428
3440
.10.1109/TVT.2008.919988
30.
Koprubasi
,
K.
,
2008
, “
Modeling and Control of a Hybrid-Electric Vehicle for Drivability and Fuel Economy Improvements
,” Ph.D. thesis,
The Ohio State University
, Columbus, OH.
31.
Arata
,
J.
,
Leamy
,
M.
, and
Cunefare
,
K.
,
2012
, “
Power-Split HEV Control Strategy Development With Refined Engine Transients
,”
SAE Int. J. Altern. Powertrains
,
1
(
1
), pp.
119
133
.10.4271/2012-01-0629
32.
Skugor
,
B.
,
Ranogajec
,
V.
, and
Deur
,
J.
,
2013
, “
On Smoothing HEV/EREV Supervisory Control Action Using an Extended ECMS Approach
,” 2013 World Electric Vehicle Symposium and Exhibition (
EVS27
), Barcelona, Spain, Nov. 17–20, pp.
1
10
.10.1109/EVS.2013.6914990
33.
Liu
,
Z.
,
Mamun
,
A.-A. M.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2018
, “
Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck
,”
SAE Int. J. Altern. Powertrains
,
7
(
2
), pp.
155
168
.10.4271/08-07-02-0010
You do not currently have access to this content.