Abstract

For efficient roll-to-roll (R2R) production of flexible electronic components, a precise R2R transfer peeling process is essential, requiring accurate modeling and control. This paper introduces a novel approach to confining the dynamics of a nonlinear R2R mechanical peeling system within a convex set known as a norm-bounded linear differential inclusion (NLDI). This method utilizes constraints on uncertain system variables to create a tighter NLDI representation compared to other convexification techniques. Moreover, it offers drastically reduced computational cost compared to previous methods applied to convexify the R2R peeling system. The NLDI is employed to generate an H-optimal controller for the R2R peeling system, and both simulations and experiments demonstrate better dynamic performance compared to other controllers for R2R transfer.

References

1.
Young
,
G. E.
, and
Reid
,
K. N.
,
1993
, “
Lateral and Longitudinal Dynamic Behavior and Control of Moving Webs
,”
ASME J. Dyn. Syst., Meas., Control
, 115(2B), pp.
309
317
.10.1115/1.2899071
2.
Shelton
,
J. J.
, 1986, “
Dynamics of Web Tension Control With Velocity or Torque Control
,”
American Control Conference
, Seattle, WA, June 18–20, pp.
1423
1427
.10.23919/ACC.1986.4789149
3.
Gu
,
X.
,
Zhou
,
Y.
,
Gu
,
K.
,
Kurosawa
,
T.
,
Guo
,
Y.
,
Li
,
Y.
,
Lin
,
H.
, et al.,
2017
, “
Roll-to-Roll Printed Large-Area All-Polymer Solar Cells With 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend
,”
Adv. Energy Mater.
, 7(14), p. 1602742.10.1002/aenm.201602742
4.
Park
,
J.
,
Kang
,
Z.
,
Bender
,
G.
,
Ulsh
,
M.
, and
Mauger
,
S. A.
,
2020
, “
Roll-to-Roll Production of Catalyst Coated Membranes for Low-Temperature Electrolyzers
,”
J. Power Sources
,
479
, p.
228819
.10.1016/j.jpowsour.2020.228819
5.
Chao
,
C. H.
,
Hsieh
,
C.-T.
,
Ke
,
W.-J.
,
Lee
,
L.-W.
,
Lin
,
Y.-F.
,
Liu
,
H.-W.
,
Gu
,
S.
, et al.,
2021
, “
Roll-to-Roll Atomic Layer Deposition of Titania Coating on Polymeric Separators for Lithium Ion Batteries
,”
J. Power Sources
,
482
, p.
228896
.10.1016/j.jpowsour.2020.228896
6.
Juang
,
Z.-Y.
,
Wu
,
C.-Y.
,
Lu
,
A.-Y.
,
Su
,
C.-Y.
,
Leou
,
K.-C.
,
Chen
,
F.-R.
, and
Tsai
,
C.-H.
,
2010
, “
Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-to-Roll Process
,”
Carbon N. Y.
,
48
(
11
), pp.
3169
3174
.10.1016/j.carbon.2010.05.001
7.
Deokar
,
G.
,
Avila
,
J.
,
Razado-Colambo
,
I.
,
Codron
,
J.-L.
,
Boyaval
,
C.
,
Galopin
,
E.
,
Asensio
,
M.-C.
, and
Vignaud
,
D.
,
2015
, “
Towards High Quality CVD Graphene Growth and Transfer
,”
Carbon N. Y.
,
89
, pp.
82
92
.10.1016/j.carbon.2015.03.017
8.
Wang
,
Y.
,
Zheng
,
Y.
,
Xu
,
X.
,
Dubuisson
,
E.
,
Bao
,
Q.
,
Lu
,
J.
, and
Loh
,
K. P.
,
2011
, “
Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst
,”
ACS Nano
,
5
(
12
), pp.
9927
9933
.10.1021/nn203700w
9.
Gupta
,
P.
,
Dongare
,
P. D.
,
Grover
,
S.
,
Dubey
,
S.
,
Mamgain
,
H.
,
Bhattacharya
,
A.
, and
Deshmukh
,
M. M.
,
2014
, “
A Facile Process for Soak-and-Peel Delamination of CVD Graphene From Substrates Using Water
,”
Sci. Rep.
,
4
(
1
), p.
3882
.10.1038/srep03882
10.
Na
,
S. R.
,
Suk
,
J. W.
,
Tao
,
L.
,
Akinwande
,
D.
,
Ruoff
,
R. S.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2015
, “
Selective Mechanical Transfer of Graphene From Seed Copper Foil Using Rate Effects
,”
ACS Nano
,
9
(
2
), pp.
1325
1335
.10.1021/nn505178g
11.
Xin
,
H.
,
Zhao
,
Q.
,
Chen
,
D.
, and
Li
,
W.
,
2018
, “
Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene
,”
ASME J. Micro- Nano-Manuf.
,
6
(
3
), p.
031004
.10.1115/1.4040449
12.
Hong
,
N.
,
Kireev
,
D.
,
Zhao
,
Q.
,
Chen
,
D.
,
Akinwande
,
D.
, and
Li
,
W.
,
2022
, “
Roll-to-Roll Dry Transfer of Large-Scale Graphene
,”
Adv. Mater.
,
34
(
3
), p.
2106615
.10.1002/adma.202106615
13.
Hong
,
N.
,
Kireev
,
D.
,
Zhao
,
Q.
,
Chen
,
D.
,
Akinwande
,
D.
, and
Li
,
W., 2021
, “
The Line Speed Effect in Roll-to-Roll Dry Transfer of Chemical Vapor Deposition Graphene
,”
International Conference on Micro- and Nano-Devices Enabled by R2R Manufacturing
, Austin, TX, Dec. 15–17, pp.
1
6
.https://nascent.utexas.edu/sites/default/files/Hong-25-TP2.5.pdf
14.
Na
,
S. R.
,
Wang
,
X.
,
Piner
,
R. D.
,
Huang
,
R.
,
Willson
,
C. G.
, and
Liechti
,
K. M.
,
2016
, “
Cracking of Polycrystalline Graphene on Copper Under Tension
,”
ACS Nano
,
10
(
10
), pp.
9616
9625
.10.1021/acsnano.6b05101
15.
Hong
,
N.
,
Zhao
,
Q.
,
Chen
,
D.
,
Liechti
,
K. M.
, and
Li
,
W.
,
2023
, “
A Method to Estimate Adhesion Energy of As-Grown Graphene in a Roll-to-Roll Dry Transfer Process
,”
Carbon N. Y.
,
201
, pp.
712
718
.10.1016/j.carbon.2022.08.062
16.
Zhao
,
Q.
,
Hong
,
N.
,
Chen
,
D.
, and
Li
,
W.
,
2021
, “
A Dynamic System Model for Roll-to-Roll Dry Transfer of Two-Dimensional Materials and Printed Electronics
,”
ASME J. Dyn. Syst., Meas., Control
, 144(7), p.
071004
.10.1115/1.4054187
17.
Dalbe
,
M.-J.
,
Villey
,
R.
,
Ciccotti
,
M.
,
Santucci
,
S.
,
Cortet
,
P.-P.
, and
Vanel
,
L.
,
2016
, “
Inertial and Stick-Slip Regimes of Unstable Adhesive Tape Peeling
,”
Soft Matter
,
12
(
20
), pp.
4537
4548
.10.1039/C6SM00119J
18.
Zhao
,
Q.
,
Martin
,
C.
,
Hong
,
N.
,
Chen
,
D.
, and
Li
,
W.
,
2023
, “
A Real-Time Supervisory Control Strategy for Roll-to-Roll Dry Transfer of 2D Materials and Printed Electronics
,”
IEEE/ASME Trans. Mechatron.
,
28
(
5
), pp.
2832
2839
.10.1109/TMECH.2023.3243123
19.
Zhao
,
Q.
,
Hong
,
N.
,
Chen
,
D.
, and
Li
,
W.
,
2020
, “
Controlling Peeling Front Geometry in a Roll-to-Roll Thin Film Transfer Process
,”
ASME
Paper No. MSEC2020-8507.10.1115/MSEC2020-8507
20.
Kim
,
S. K.
, and
Ahn
,
C. K.
,
2020
, “
Self-Tuning Nonlinear Control System Design for Roll-to-Roll Printing Systems
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2667
2676
.10.1109/TMECH.2020.2988381
21.
Lu
,
Y.
, and
Pagilla
,
P. R.
,
2015
, “
A Nonlinear Tension Control Scheme for Web Transport Through Heating Processes
,”
ASME
Paper No. DSCC2015-9983.10.1115/DSCC2015-9983
22.
Tran
,
T. T.
, and
Choi
,
K. H.
,
2014
, “
A Backstepping-Based Control Algorithm for Multi-Span Roll-to-Roll Web System
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
45
61
.10.1007/s00170-013-5168-6
23.
Nguyen
,
V.
, and
Tran
,
T.
,
2019
, “
Integrator-Backstepping Based Control for Nonlinear Roll-to-Roll Web Dynamics
,”
J. Eng. Sci. Res.
,
3
(
2
), pp.
14
20
.10.26666/rmp.jesr.2019.2.3
24.
Mezic
,
I., 2015
, “
On Applications of the Spectral Theory of the Koopman Operator in Dynamical Systems and Control Theory
,” Conference on Decision and Control (
CDC
), Osaka, Japan, Dec. 15–18, pp.
7034
7041
.https://stanford.edu/~boyd/lmibook/lmibook.pdf
25.
Boyd
,
S. P.
,
1994
, “
Linear Matrix Inequalities in System and Control Theory
,”
Society for Industrial and Applied Mathematics
, Philadelphia, PA, pp.
1
205
.https://stanford.edu/~boyd/lmibook/lmibook.pdf
26.
Martin
,
C.
,
Zhao
,
Q.
,
Bakshi
,
S.
,
Chen
,
D.
, and
Li
,
W., 2022
, “
H Optimal Control for Maintaining the R2R Peeling Front
,”
Modeling, Estimation and Control Conference
, Jersey City, NJ, Oct. 2–5, pp.
663
668
.10.1016/j.ifacol.2022.11.258
27.
Kuiava
,
R.
,
Ramos
,
R. A.
, and
Pota
,
H. R.
,
2012
, “
A New Approach for Modeling and Control of Nonlinear Systems Via Norm-Bounded Linear Differential Inclusions
,”
Rev. Controle Autom.
,
23
(
4
), pp.
387
403
.10.1590/S0103-17592012000400001
28.
Hu
,
X. B.
, and
Chen
,
W. H.
,
2007
, “
Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control
,”
Int. J. Autom. Comput.
,
4
(
2
), pp.
195
202
.10.1007/s11633-007-0195-0
29.
Rodrigues
,
C. R.
,
Kuiava
,
R.
, and
Ramos
,
R. A.
,
2011
, “
Design of a Linear Quadratic Regulator for Nonlinear Systems Modeled Via Norm-Bounded Linear Differential Inclusions
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
7352
7357
.10.3182/20110828-6-IT-1002.01207
30.
Häggblom
,
K. E., 2006
, “
Data-Based Uncertainty Modeling by Convex Optimization Techniques
,”
International Symposium on Advanced Control of Chemical Processes
, Gramado, Brazil, Apr. 2–5, pp.
91
96
.10.3182/20060402-4-BR-2902.00091
31.
Haggblom
,
K. E., 2010
, “
Convex Formulations for Data-Based Uncertainty Minimization of Linear Uncertainty Models
,”
International Conference on Control Automation Robotics & Vision
, Singapore, Dec. 7–10, pp.
501
505
.10.1109/ICARCV.2010.5707895
32.
Hindi
,
H.
,
Seong
,
C.-Y.
, and
Boyd
,
S., 2002
, “
Computing Optimal Uncertainty Models From Frequency Domain Data
,”
Proceedings of the IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10–13, pp.
2898
2905
.10.1109/CDC.2002.1184290
33.
Honda
,
M.
, and
Seiler
,
P., 2014
, “
Uncertainty Modeling for Hard Disk Drives
,”
American Control Conference
, Portland, OR, June 4–6, pp.
3341
3347
.10.1109/ACC.2014.6859514
34.
Zecevic
,
A. I.
, and
Siljak
,
D. D.
,
2003
, “
Stabilization of Nonlinear Systems With Moving Equilibria
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
1036
1040
.10.1109/TAC.2003.812791
35.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H Control
,”
Int. J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.10.1002/rnc.4590040403
36.
Mosek Aps
,
2021
, “
The MOSEK Optimization Toolbox for MATLAB Manual
,” Mosek Aps, Copenhagen, Denmark, accessed Sept. 17, 2024, https://docs.mosek.com/
37.
Bryson
,
A. E.
,
1993
,
Control of Spacecraft and Aircraft
, Vol.
41
,
Princeton University Press
,
Princeton, NJ
.
38.
Yin
,
Z.
,
Huang
,
Y.
,
Yang
,
H.
,
Chen
,
J.
,
Duan
,
Y.
, and
Chen
,
W.
,
2022
, “
Flexible Electronics Manufacturing Technology and Equipment
,”
Sci. China Technol. Sci.
,
65
(
9
), pp.
1940
1956
.10.1007/s11431-022-2098-1
39.
Chen
,
W.
,
Sun
,
X.
,
Chen
,
W.
,
Xie
,
G.
,
Chen
,
S.
, and
Wang
,
J.
,
2022
, “
Nonlinear Web Tension Control of a Roll-to-Roll Printed Electronics System
,”
Precis. Eng.
,
76
, pp.
88
94
.10.1016/j.precisioneng.2022.03.001
You do not currently have access to this content.