Abstract

Data-driven fault diagnosis method is widely used in the field of engine health management, which uses engine sensor data as input and engine faulty components as output for component-level fault diagnosis of the engine. The application premise of the general data-driven fault diagnosis method is that all data come from the same working conditions, that is, they belong to the same distribution. However, this assumption is not valid in the actual engine fault diagnosis, because the engine state will change with the increase of running time. In the meantime, collecting engine data is usually expensive, time-consuming, and laborious. To solve these problems, extreme learning machine (ELM)-based two transfer learning methods for fault diagnosis of turboshaft engines are proposed in this paper. One is joint solving ELM (JSELM), which regards the information of the target domain and source domain as similar and different parts, respectively, and knowledge is extracted from them at the same time. The other is model transfer-based ELM (MTELM), which uses the idea of pretraining. First, a general ELM classifier is trained with the source domain data and then fine-tuned with the target domain data. Both methods have a good real-time performance as the traditional ELM. When there are a few data in the target domain, they achieve much better classification accuracy than traditional ELM. Finally, experiments are carried out with turboshaft engine simulation data. The results show that both methods are effective, especially MTELM, which has better classification accuracy.

Graphical Abstract Figure

Schematic diagram of JSELM

Graphical Abstract Figure

Schematic diagram of JSELM

Close modal

References

1.
Jaw
,
L. C.
,
2005
, “
Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step
,”
ASME
Paper No. GT2005-68625.10.1115/GT2005-68625
2.
Borguet
,
S.
, and
Léonard
,
O.
,
2009
, “
Coupling Principal Component Analysis and Kalman Filtering Algorithms for on-Line Aircraft Engine Diagnostics
,”
Control Eng. Pract.
,
17
(
4
), pp.
494
502
.10.1016/j.conengprac.2008.09.008
3.
Simon
,
D. L.
, and
Rinehart
,
A. W.
,
2016
, “
Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
071201
.10.1115/1.4032339
4.
Shen
,
Y.
, and
Khorasani
,
K.
,
2020
, “
Hybrid Multi-Mode Machine Learning-Based Fault Diagnosis Strategies With Application to Aircraft Gas Turbine Engines
,”
Neural Networks
,
130
, pp.
126
142
.10.1016/j.neunet.2020.07.001
5.
Cao
,
Y.
,
Zhang
,
B.
,
Wang
,
H.
, and
Bai
,
Y.
,
2020
, “
Gas Path Fault Diagnosis of Aero-Engine Based on Soft Square Pinball Loss ELM
,”
IEEE Access
,
8
, pp.
131032
131046
.10.1109/ACCESS.2020.3010096
6.
Zhao
,
Y. P.
,
Chen
,
Y. B.
,
Hao
,
Z.
,
Wang
,
H.
,
Yang
,
Z.
, and
Tan
,
J. F.
,
2020
, “
Imbalanced Kernel Extreme Learning Machines for Fault Detection of Aircraft Engine
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
10
), p.
101002
.10.1115/1.4047117
7.
He
,
J. J.
, and
Zhao
,
Y. P.
,
2022
, “
An Improved Prognostics Model With Its Application to the Remaining Useful Life of Turbofan Engine
,”
Proc. Inst. Mech. Eng., Part G
,
236
(
10
), pp.
2108
2130
.10.1177/09544100211050432
8.
Zhao
,
Y. P.
,
Li
,
Z. Q.
, and
Hu
,
Q. K.
,
2020
, “
A Size-Transferring Radial Basis Function Network for Aero-Engine Thrust Estimation
,”
Eng. Appl. Artif. Intell.
,
87
, p.
103253
.10.1016/j.engappai.2019.103253
9.
Ren
,
L. H.
,
Ye
,
Z. F.
, and
Zhao
,
Y. P.
,
2020
, “
A Modeling Method for Aero-Engine by Combining Stochastic Gradient Descent With Support Vector Regression
,”
Aerosp. Sci. Technol.
,
99
, p.
105775
.10.1016/j.ast.2020.105775
10.
Jin
,
H. J.
,
Zhao
,
Y. P.
, and
Wang
,
Z. Q.
,
2023
, “
A Rotating Stall Warning Method for Aero-Engine Compressor Based on DeepESVDD-CNN
,”
Aerosp. Sci. Technol.
,
139
, p.
108411
.10.1016/j.ast.2023.108411
11.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.10.1109/TKDE.2009.191
12.
Li
,
C.
,
Zhang
,
S.
,
Qin
,
Y.
, and
Estupinan
,
E.
,
2020
, “
A Systematic Review of Deep Transfer Learning for Machinery Fault Diagnosis
,”
Neurocomputing
,
407
, pp.
121
135
.10.1016/j.neucom.2020.04.045
13.
Giorgi
,
M. G.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2018
, “
A Diagnostics Tool for Aero-Engines Health Monitoring Using Machine Learning Technique
,”
Energy Proc.
,
148
, pp.
860
867
.10.1016/j.egypro.2018.08.109
14.
Simon
,
D. L.
,
2010
, “
An Integrated Architecture for on-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics
,”
57th JANNAF Joint Propulsion Meeting
,
Colorado Springs, CO
, May 3–7, pp.
1
24
.https://ntrs.nasa.gov/citations/20100024368
15.
Zheng
,
Y.
,
2015
, “
Methodologies for Cross-Domain Data Fusion: An Overview
,”
IEEE Trans. Big Data
,
1
(
1
), pp.
16
34
.10.1109/TBDATA.2015.2465959
16.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.10.1109/JPROC.2020.3004555
17.
Huang
,
J.
,
Smola
,
A.
,
Gretton
,
A.
,
Borgwardt
,
K. M.
, and
Schölkopf
,
B.
,
2007
, “
Correcting Sample Selection Bias by Unlabeled Data
,”
Advances in Neural Information Processing Systems
,
Vancouver, BC, Canada
, Dec. 4–7, pp.
601
608
.
18.
Borgwardt
,
K. M.
,
Gretton
,
A.
,
Rasch
,
M. J.
,
Kriegel
,
H. P.
,
Schölkopf
,
B.
, and
Smola
,
A. J.
,
2006
, “
Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy
,”
Bioinformatics
,
22
(
14
), pp.
e49
e57
.10.1093/bioinformatics/btl242
19.
Guo
,
L.
,
Lei
,
Y.
,
Xing
,
S.
,
Yan
,
T.
, and
Li
,
N.
,
2019
, “
Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
,”
IEEE Trans. Ind. Electron.
,
66
(
9
), pp.
7316
7325
.10.1109/TIE.2018.2877090
20.
Wen
,
L.
,
Gao
,
L.
, and
Li
,
X.
,
2019
, “
A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(
1
), pp.
136
144
.10.1109/TSMC.2017.2754287
21.
Wang
,
Q.
,
Michau
,
G.
, and
Fink
,
O.
,
2019
, “
Domain Adaptive Transfer Learning for Fault Diagnosis
,”
Prognostics and System Health Management Conference
,
Paris, France
,
May 2–5
, pp.
279
285
.10.48550/arXiv.1905.06004
22.
Zhang
,
R.
,
Tao
,
H.
,
Wu
,
L.
, and
Guan
,
Y.
,
2017
, “
Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions
,”
IEEE Access
,
5
, pp.
14347
14357
.10.1109/ACCESS.2017.2720965
23.
Zhong
,
S. S.
,
Fu
,
S.
, and
Lin
,
L.
,
2019
, “
A Novel Gas Turbine Fault Diagnosis Method Based on Transfer Learning With CNN
,”
Measurement
,
137
, pp.
435
453
.10.1016/j.measurement.2019.01.022
24.
Tang
,
S.
,
Tang
,
H.
, and
Chen
,
M.
,
2019
, “
Transfer-Learning Based Gas Path Analysis Method for Gas Turbines
,”
Appl. Therm. Eng.
,
155
, pp.
1
13
.10.1016/j.applthermaleng.2019.03.156
25.
Wang
,
Y. Q.
, and
Zhao
,
Y. P.
,
2023
, “
A Novel Inter-Domain Attention-Based Adversarial Network for Aero-Engine Partial Unsupervised Cross-Domain Fault Diagnosis
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106486
.10.1016/j.engappai.2023.106486
26.
Zhao
,
Y. P.
,
2016
, “
Parsimonious Kernel Extreme Learning Machine in Primal Via Cholesky Factorization
,”
Neural Networks
,
80
, pp.
95
109
.10.1016/j.neunet.2016.04.009
27.
Huang
,
G. B.
,
Zhu
,
Q. Y.
, and
Siew
,
C. K.
,
2006
, “
Extreme Learning Machine: Theory and Applications
,”
Neurocomputing
,
70
(
1–3
), pp.
489
501
.10.1016/j.neucom.2005.12.126
28.
Hassan
,
S.
,
Khanesar
,
M. A.
,
Hussein
,
N. K.
,
Belhaouari
,
S. B.
,
Amjad
,
U.
, and
Mashwani
,
W. K.
,
2022
, “
Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
,”
Comput., Mater. Contin.
,
71
(
2
), pp.
3513
3531
.10.32604/cmc.2022.022018
29.
Wong
,
P. K.
,
Yang
,
Z.
,
Vong
,
C. M.
, and
Zhong
,
J.
,
2014
, “
Real-Time Fault Diagnosis for Gas Turbine Generator Systems Using Extreme Learning Machine
,”
Neurocomputing
,
128
, pp.
249
257
.10.1016/j.neucom.2013.03.059
30.
Chen
,
Z.
,
Gryllias
,
K.
, and
Li
,
W.
,
2019
, “
Mechanical Fault Diagnosis Using Convolutional Neural Networks and Extreme Learning Machine
,”
Mech. Syst. Signal Process.
,
133
, p.
106272
.10.1016/j.ymssp.2019.106272
31.
Zhao
,
Y. P.
,
Huang
,
G.
,
Hu
,
Q. K.
,
Tan
,
J. F.
,
Wang
,
J. J.
, and
Yang
,
Z.
,
2019
, “
Soft Extreme Learning Machine for Fault Detection of Aircraft Engine
,”
Aerosp. Sci. Technol.
,
91
, pp.
70
81
.10.1016/j.ast.2019.05.021
32.
Zhao
,
Y. P.
, and
Chen
,
Y. B.
,
2022
, “
Extreme Learning Machine Based Transfer Learning for Aero Engine Fault Diagnosis
,”
Aerosp. Sci. Technol.
,
121
, p.
107311
.10.1016/j.ast.2021.107311
33.
Li
,
B.
,
Zhao
,
Y. P.
, and
Chen
,
Y. B.
,
2022
, “
Learning Transfer Feature Representations for Gas Path Fault Diagnosis Across Gas Turbine Fleet
,”
Eng. Appl. Artif. Intell.
,
111
, p.
104733
.10.1016/j.engappai.2022.104733
34.
Zhang
,
L.
, and
Zhang
,
D.
,
2017
, “
Evolutionary Cost-Sensitive Extreme Learning Machine
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
12
), pp.
3045
3060
.10.1109/TNNLS.2016.2607757
35.
Tolani
,
D.
,
Yasar
,
M.
,
Chin
,
S.
, and
Ray
,
A.
,
2005
, “
Anomaly Detection for Health Management of Aircraft Gas Turbine Engines
,”
Proceedings of the American Control Conference
,
Portland, OR
, June 8–10, pp.
459
464
.10.1109/ACC.2005.1469978
36.
Lin
,
L.
,
Liu
,
J.
,
Guo
,
H.
,
Lv
,
Y.
, and
Tong
,
C.
,
2021
, “
Sample Adaptive Aero-Engine Gas-Path Performance Prognostic Model Modeling Method
,”
Knowl.-Based Syst.
,
224
, p.
107072
.10.1016/j.knosys.2021.107072
37.
Zhao
,
Y. P.
, and
Cai
,
W.
,
2024
, “
The Perceptron Algorithm With Uneven Margins Based Transfer Learning for Turbofan Engine Fault Detection
,”
Eng. Appl. Artif. Intell.
,
127
, p.
107249
.10.1016/j.engappai.2023.107249
38.
Liu
,
Z.
,
Cao
,
Z.
,
Shen
,
Y.
,
Ouyang
,
Y.
, and
Zhang
,
G.
,
2014
, “
Numeric Simulation of Gas-Path Fault for a Turboshaft
,”
J. Vib., Meas. Diagn.
,
34
(
5
), pp.
844
850
.
You do not currently have access to this content.