Abstract

The advent of easy access to large amount of data has sparked interest in directly developing the relationships between input and output of dynamic systems. A challenge is that in addition to the applied input and the measured output, the dynamics can also depend on hidden states that are not directly measured. In general, it is unclear what type of data, such as past input and or past output is needed, to learn inverse operators (that predict the input needed to track a desired output for control purposes) with a desired precision. The main contribution of this work is to show that, irrespective of the selected model, removing the hidden-state dependence and achieving a desired precision of inverse operators require (i) a sufficiently-long past history of the output and (ii) sufficiently-precise estimates of the output's instantaneous time derivatives that are necessary and sufficient for linear systems, and under some conditions, for nonlinear systems. This insight, about the required observables (output history and derivative) for removing the hidden-state dependence and achieving precision, is used to develop a data-enabled algorithm to learn the inverse operator for multi-input multi-output square systems. Simulation examples are used to illustrate that neural nets (with universal approximation property) can learn the inverse operator with sufficient precision only if the required observables, identified in this work, are included in training.

References

1.
Kocijan
,
J.
,
Murray-Smith
,
R.
,
Rasmussen
,
C. E.
, and
Girard
,
A.
,
2004
, “
Gaussian Process Model Based Predictive Control
,”
American Control Conference
, Vol.
3
,
Boston, MA
, June 30–July 2, pp.
2214
2219
.10.23919/ACC.2004.1383790
2.
Ren
,
Y.
,
Wang
,
Q.
, and
Michaleris
,
P. P.
,
2021
, “
A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
12
), p.
121006
.10.1115/1.4052245
3.
Boyle
,
S.
, and
Stockar
,
S.
,
2023
, “
Computationally Efficient Hierarchical Model Predictive Control Via Koopman Operator
,”
ASME J. Dyn. Sys., Meas., Control
,
145
(
4
), p.
041003
.10.1115/1.4056703
4.
Chinde
,
V.
,
Lin
,
Y.
, and
Ellis
,
M. J.
,
2022
, “
Data-Enabled Predictive Control for Building HVAC Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
8
), p.
081001
.10.1115/1.4054314
5.
Mamakoukas
,
G.
,
Castano
,
M. L.
,
Tan
,
X.
, and
Murphey
,
T. D.
,
2021
, “
Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems
,”
IEEE Trans. Rob.
,
37
(
6
), pp.
2173
2192
.10.1109/TRO.2021.3076581
6.
Bakarji
,
J.
,
Champion
,
K.
,
Nathan Kutz
,
J.
, and
Brunton
,
S. L.
,
2023
, “
Discovering Governing Equations From Partial Measurements With Deep Delay Autoencoders
,”
Proc. R. Soc. A
,
479
(
2276
), p.
20230422
.10.1098/rspa.2023.0422
7.
Yoon
,
H.-J.
,
Lee
,
D.
, and
Hovakimyan
,
N.
,
2019
, “
Hidden Markov Model Estimation-Based Q-Learning for Partially Observable Markov Decision Process
,”
American Control Conference
, Philadelphia, PA, July 10–12, pp.
2366
2371
.10.23919/ACC.2019.8814849
8.
Mezić
,
I.
,
2005
, “
Spectral Properties of Dynamical Systems, Model Reduction and Decompositions
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
309
325
.10.1007/s11071-005-2824-x
9.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2018
, “
Generalizing Koopman Theory to Allow for Inputs and Control
,”
SIAM J. Appl. Dyn. Syst.
,
17
(
1
), pp.
909
930
.10.1137/16M1062296
10.
Kamb
,
M.
,
Kaiser
,
E.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2020
, “
Time-Delay Observables for Koopman: Theory and Applications
,”
SIAM J. Appl. Dyn. Syst.
,
19
(
2
), pp.
886
917
.10.1137/18M1216572
11.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
12.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
Society for Industrial and Applied Mathematics, Philadelphia, PA
.
13.
Yan
,
L. L.
,
Banka
,
N.
,
Owan
,
P.
,
Piaskowy
,
W. T.
,
Garbini
,
J. L.
, and
Devasia
,
S.
,
2021
, “
Mimo ILC Using Complex-Kernel Regression and Application to Precision Sea Robots
,”
Automatica
,
127
, p.
109550
.10.1016/j.automatica.2021.109550
14.
Ljung
,
L.
,
1999
, “
System Identification: Theory for the User
,”
2nd ed
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
15.
Aarnoudse
,
L.
,
Ohnishi
,
W.
,
Poot
,
M.
,
Tacx
,
P.
,
Strijbosch
,
N.
, and
Oomen
,
T.
,
2021
, “
Control-Relevant Neural Networks for Intelligent Motion Feedforward
,”
IEEE International Conference on Mechatronics (ICM)
,
IEEE
, Kashiwa, Japan, Mar. 7–9, pp. 1–6. 10.1109/Icm46511.2021.9385690
16.
van Meer
,
M.
,
Poot
,
M.
,
Portegies
,
J.
, and
Oomen
,
T.
,
2022
, “
Gaussian Process Based Feedforward Control for Nonlinear Systems With Flexible Tasks: With Application to a Printer With Friction
,”
IFAC-PapersOnLine
,
55
(
37
), pp.
241
246
.10.1016/j.ifacol.2022.11.191
17.
Fine
,
B. T.
,
Mishra
,
S.
, and
Tomizuka
,
M.
,
2009
, “
Model Inverse Based Iterative Learning Control Using Finite Impulse Response Approximations
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
931
936
.10.1109/ACC.2009.5160507
18.
Teng
,
K.-T.
, and
Tsao
,
T.-C.
,
2015
, “
A Comparison of Inversion Based Iterative Learning Control Algorithms
,”
American Control Conference
, Chicago, IL, July 1–3, pp.
3564
3569
.10.1109/ACC.2015.7171883
19.
Garcia
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice-a Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.10.1016/0005-1098(89)90002-2
20.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
,
1996
, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
930
942
.10.1109/9.508898
21.
Zou
,
Q.
, and
Devasia
,
S.
,
2007
, “
Precision Preview-Based Stable-Inversion for Nonlinear Nonminimum-Phase Systems: The VTOL Example
,”
Automatica
,
43
(
1
), pp.
117
127
.10.1016/j.automatica.2006.08.007
22.
Devasia
,
S.
,
2019
, “
Iterative Machine Learning for Output Tracking
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
516
526
.10.1109/TCST.2017.2772807
23.
Yan
,
L. L.
, and
Devasia
,
S.
,
2022
, “
Precision Data-Enabled Koopman-Type Inverse Operators for Linear Systems
,”
IFAC-PapersOnLine
,
55
(
37
), pp.
181
186
.10.1016/j.ifacol.2022.11.181
24.
Marino
,
R.
, and
Tomei
,
P.
,
1995
,
Nonlinear Control Design
,
Prentice Hall International
,
London, NY
.
25.
Kolavennu
,
S.
,
Palanki
,
S.
, and
Cockburn
,
J.
,
2001
, “
Nonlinear Control of Nonsquare Multivariable Systems
,”
Chem. Eng. Sci.
,
56
(
6
), pp.
2103
2110
.10.1016/S0009-2509(00)00470-X
26.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems Third Edition
,
Patience Hall
, Upper Saddle River, NJ.
27.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems. (Communications and Control Engineering)
, 3rd ed.,
Springer
,
London, UK
.
28.
Desoer
,
C. A.
, and
Vidyasagar
,
M.
,
1975
,
Feedback Systems: Input-Output Properties
, Vol.
55
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
29.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
4
), pp.
625
630
.
30.
Gonçalves
,
J.
, and
Warnick
,
S.
,
2008
, “
Necessary and Sufficient Conditions for Dynamical Structure Reconstruction of LTI Networks
,”
IEEE Trans. Autom. Control
,
53
(
7
), pp.
1670
1674
.10.1109/TAC.2008.928114
31.
Nandi
,
S.
,
Migeon
,
V.
,
Singh
,
T.
, and
Singla
,
P.
,
2018
, “
Polynomial Chaos-Based Controller Design for Uncertain Linear Systems With State and Control Constraints
,”
ASME J. Dyn. Sys., Meas., Control
,
140
(
7
), p.
071009
.10.1115/1.4038800
32.
Sariyildiz
,
E.
,
Mutlu
,
R.
, and
Zhang
,
C.
,
2019
, “
Active Disturbance Rejection Based Robust Trajectory Tracking Controller Design in State Space
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
6
), p.
061013
.10.1115/1.4042878
33.
Hernández
,
A. G. G.
,
Fridman
,
L.
,
Levant
,
A.
,
Shtessel
,
Y.
,
Leder
,
R.
,
Monsalve
,
C. R.
, and
Andrade
,
S. I.
,
2013
, “
High-Order Sliding-Mode Control for Blood Glucose: Practical Relative Degree Approach
,”
Control Eng. Pract.
,
21
(
5
), pp.
747
758
.10.1016/j.conengprac.2012.11.015
34.
Rinaldi
,
G.
, and
Ferrara
,
A.
,
2020
, “
Automatic Identification of the Relative Degree of Nonlinear Systems: Application to Sliding Mode Control Design and Experimental Assessment
,”
Control Eng. Pract.
,
94
, p.
104207
.10.1016/j.conengprac.2019.104207
35.
Guo
,
P.
,
2006
, “
Nonlinear Predictive Functional Control Based on Hopfield Network and Its Application in CSTR
,”
International Conference on Machine Learning and Cybernetics
,
Dalian, China, Aug. 13–16, pp.
3036
3039
.10.1109/ICMLC.2006.258361
36.
He
,
M.
,
Wu
,
X.
,
Shao
,
G.
,
Wen
,
Y.
, and
Liu
,
T.
,
2022
, “
A Semiparametric Model-Based Friction Compensation Method for Multijoint Industrial Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
3
), p. 034501.10.1115/1.4052947
37.
Astolfi
,
D.
,
Castellani
,
F.
, and
Natili
,
F.
,
2021
, “
Wind Turbine Multivariate Power Modeling Techniques for Control and Monitoring Purposes
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
3
), p. 034501.10.1115/1.4048490
38.
Hatze
,
H.
,
1981
, “
The Use of Optimally Regularized Fourier Series for Estimating Higher-Order Derivatives of Noisy Biomechanical Data
,”
J. Biomech.
,
14
(
1
), pp.
13
18
.10.1016/0021-9290(81)90076-2
39.
Ahnert
,
K.
, and
Abel
,
M.
,
2007
, “
Numerical Differentiation of Experimental Data: Local Versus Global Methods
,”
Comput. Phys. Commun.
,
177
(
10
), pp.
764
774
.10.1016/j.cpc.2007.03.009
40.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. Journal Control
,
76
(
9–10
), pp.
924
941
.10.1080/0020717031000099029
41.
Lagergren
,
J. H.
,
Nardini
,
J. T.
,
Michael Lavigne
,
G.
,
Rutter
,
E. M.
, and
Flores
,
K. B.
,
2020
, “
Learning Partial Differential Equations for Biological Transport Models From Noisy Spatio-Temporal Data
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190800
.10.1098/rspa.2019.0800
42.
Van Breugel
,
F.
,
Kutz
,
J. N.
, and
Brunton
,
B. W.
,
2020
, “
Numerical Differentiation of Noisy Data: A Unifying Multi-Objective Optimization Framework
,”
IEEE Access
,
8
, pp.
196865
196877
.10.1109/ACCESS.2020.3034077
43.
Yan
,
L.
,
2024
, “
Inverse Models for Trajectory Control Aided by Data, Machine Learning Models, and GPUs
,” Ph.D. thesis,
University of Washington
,
Seattle, WA
, Jan.
You do not currently have access to this content.